
Mid-Course Test Reinforcement Learning

Artificial Intelligence Techniques (IN4010)

December 21st, 2016

Assume we are an agent in a 3x2 gridworld, as shown in the below figure. We start at the
bottom left node (1) and finish in the top right node (6). When node 6 is reached, we receive a
reward of +10 and return to the start for a new episode. On all other actions that not lead to
state 6, the reward is -1.

In each state we have four possible actions: up, down, left and right. For each action we
move deterministically in the specific direction on the grid. Assume that we cannot take actions
that bring us outside the grid.

The current estimates of Q(s, a) are given in the below table:

Q(1,up)=4 Q(1,right)=3
Q(2,up)=6 Q(2,left)=3 Q(2,right)=8
Q(3,up)=9 Q(3,left)=7

Q(4,down)=2 Q(4,right)=5
Q(5,down)=6 Q(5,left)=5 Q(5,right)=8

Question a (1p) Since we have full environmental knowledge, we can apply Bellman’s equation
to further update the Q estimates (i.e. dynamic programming). We take a greedy policy and
γ = 0.9. For convenience, the Q-specification of Bellman’s equation is given (where s′ and a′

denote the next state and action, respectively):

Q(s, a) =
∑
s′

P a
ss′ [R

a
ss′ + γ

∑
a′

π(s′, a′)Q(s′, a′)] (1)

Perform a single update of Q(3,left).

Question b (1p) We now no longer assume a model of the environment. The above table was
rather created through temporal difference learning, where we sample through the state-space.
Why is it not smart to take the greedy policy now (from the start)? What should be balanced
here?

Question c (1p) Why were we using Q-values? What is the advantage of learning state-action
values (Q) compared to state values (V)? (Hint: consider action selection)

Question d (1p) We decide to switch to softmax exploration:

π(s, a) =
eQ(s,a)∑
b e

Q(s,b)
(2)

We are currently in node 2. Give the probability that we will move right on the next step (you
can write the equation with correct numeric values, but you may skip calculating the resulting
decimal number).

Question e (1p) We will continue updating the Q-table with a SARSA (state-action-reward-
state-action) algorithm. Starting from node 2, we have sampled the following trajectory: 2 - up
- 5 - right - 6, after which the trial ended. Update two Q(s, a) entries by filling in the form below
(take α = 0.2, γ = 0.8) . The SARSA equation is provided:

Q(s, a) = Q(s, a) + α[Ra
ss′ + γQ(s′, a′) −Q(s, a)] (3)

s a r s’ a’

Q(,) =

s a r s’ a’

Q(,) =

