
1

Learning indirect optimal control for dynamic motion
planning with RRT

W.J. Wolfslag, M. Bharatheesha, T.M. Moerland and M. Wisse
Delft University of Technology
e-mail: w.j.wolfslag@tudelft.nl

Abstract—Sampling based motion planners are well suited to plan
motions around obstacles for high dimensional systems, but require
extensive online computation to plan in state-space. A novel learning
approach, based on indirect optimal control, shifts the computation cost
offline. We show results on a pendulum swing up problem, and plan to
evaluate on higher dimensional systems.

I. INTRODUCTION

Many tasks, including walking, are best planned while explicitly
considering the equations of motion. Unfortunately, such state-space
planning is computationally complex, particularly when there are
obstacles to avoid. Sampling based planning algorithms, such as
Rapidly-exploring Random Trees (RRT), have proven to be the most
viable way to handle high dimensional spaces and obstacles [3, 4]
when planning in configuration space. We research the use of RRT
for planning in state-space.

RRT works by splitting the planning into smaller segments, see
Figure 1. It builds a tree structure with the states of the system as
nodes, and the trajectories between them as edges. By sampling a
random point in state-space, and connecting/steering it to the nearest
node in the tree, the tree is grown. This process continues until the
desired state is reached. The challenge of using this approach in
state-space is that both connecting nodes and determining which
node is nearest are computationally expensive tasks [4].

A promising approach to avoid performing these tasks online is
called Learning-RRT[1, 5]. In Learning-RRT, an optimal control
algorithm provides a database of optimal trajectories. These trajecto-
ries are the input for a supervised learning algorithm, which in turn
provides approximations to the steering and distance functions the
RRT requires. As these approximations are quick to compute, the
online performance of the planning algorithm is increased.

Until now, learning-RRT algorithms have only learned the dis-
tance function. The steering function typically has a much higher
dimension, and is therefore more difficult to approximate. Online
steering therefore remains a computational burden [1]. Furthermore,
in order to learn the distance function, a dataset of many optimal
trajectories needs to be found. As all these trajectories are found
numerically, the increase in online performance comes at a large cost
in offline-computation. Here we propose to use a specific optimal
control scheme, known as indirect optimal control to generate the
dataset. This approach, which results in the RRTcoLearn algorithm,
addresses both issues mentioned above.

II. METHOD

The first step in a learning-RRT is to create a dataset of optimal
trajectories. Specifically, each datum captures an initial state, a final
state, a cost-to-go and a set of parameters that describe the input
used for the trajectory. The most common approach to find these
trajectories are the so-called direct optimal control approaches. In
direct optimal control the state equations and cost function are
approximated by a discretized system. A numerical optimization
scheme then optimizes this discretized approximation. Depending
on the type of discretization, various schemes have been devised,
e.g. [6, 8, 10, 11].

An alternative to these direct approaches is the much older indirect
approach [9, 7], which first optimizes using calculus of variations and
then discretizes. For many applications, direct approaches replaced
the indirect approach, due to better numerical properties: indirect

− 4 − 2 0

Angular Posit ion (rad)

− 1

0

1

2

3

A
n

g
u

la
r 

V
e

lo
c
it

y
 (

ra
d

/s
)

2

Fig. 1: State-space coordinates of the nodes in the tree of a succesful run.
The path that leads from the initial point to the goal is highlighted.

approach is numerically unstable at long planning distances. How-
ever, the numerical instability is no problem for the short segments
in RRT.

Indirect optimal control includes the equations of motion in the
cost function by using Lagrange multipliers, which are called the
costate. By setting the variation of the augmented cost function to
zero, we obtain a set of differential equations for the evolution of the
state and the costate. Typically, the indirect optimal control approach
proceeds as follows. For a given costate, these differential equations
are (numerically) integrated, which result in a locally optimal state
trajectory. Note that the final state of this trajectory depends on
the choice of initial costate and the final time of the integration.
By tuning the initial costate and the final time, we find a locally
optimal trajectory that reaches the desired state. The first advantage
of the indirect optimal control approach is apparent here, because the
costate effectively parametrizes the input using the same number of
parameters as there are states. This is much smaller than the number
of parameters in most direct optimal control schemes.

In typical use, the costate and time are tuned by a numerical
optimization method, which minimizes the difference between final
state and desired state. However, for our purposes, such numerical
optimization is not required. Note that all feasible final states are
reached (optimally) by some combination of initial state, initial
costate and final time . Therefore, if we sample from the allowed ini-
tial states, initial costates and final times, we effectively sample over
all initial state-final state combinations. While previous approaches
had to sample across state-space and then numerically optimize the
steering input, we can now move the sampling to the costate. This is
the second advantage of using the indirect optimal control approach,
as it eliminates the need for numerical optimization, and therefore
the data can be generated much faster.

The second step of a learning-RRT is to train a supervised learning
algorithm on the dataset in order to approximate the connection and
distance functions. We use the k-nearest neighbours [2] algorithm in
our experiments, because it is a robust approach for low dimensional
problems. More sophisticated algorithms potentially improve the
results on higher dimensional problems, and are currently being
implemented.

The third, online, step of the Learning RRT algorithm is the
same as a normal RRT-algorithm, which consists of the following
steps. First, sample a point in statespace. Then, select the node
that is nearest to the sampled point according to the approximated
distance function. Finally, use the approximated connection function
to expand the selected node. The algorithm iterates these steps until
it connects to the desired region in state-space.

Challenges of learning RRT

The use of machine learning to approximate distances and tra-
jectories in RRT leads to three issues, that were left undiscussed
in previous literature on the topic. When not adressed, these issues
cause the RRTcoLearn algorithm to fail.



2

First, as the dataset is generated by an algorithm that finds local
optima, it might find multiple ways to find a connection between
two states, each associated with a local optimum. This is only a
minor problem for the cost-to-go function, but harmful for predicting
the control parameters. A naı̈ve learning algorithm presented with
two solutions to the same problem will, roughly speaking, average
over the solutions. Averaging over two control inputs that reach the
target often results in a motion that ends up nowhere near the target.
To resolve this issue we use a procedure that aims to eliminate the
non-globally-optimal datapoints. Our procedure is based on a simple
heuristic: when two datapoints are close together, remove the one
with the highest cost-to-go. By repeatedly sampling datapoints, and
applying this heuristic, the dataset is cleaned up.

Second, a machine learning algorithm can only hope to approx-
imate well near data it has already seen. In a learning RRT, the
dataset consists of short motions, whereas the RRT-algorithm might
ask questions about long motions. Therefore our machine learning
step has an additional phase, which provides a classifier that tells
whether predictions are valid or not. For an initial and final state
sampled online, this classifier tells whether there are enough nearby
samples in the dataset for the output of the learned estimators to
make sense. If this is not the case, the sample is marked as invalid,
and the predictions are not used in the rest of the algorithm.

Third, if the RRT has to precisely reach a certain state, even
small approximation errors by the learning algorithm can stop
the algorithm from finding a solution. This problem can occur
due to stringent constraints, for example from obstacles, but most
prominently it occures near the goal-state. The RRT’s state sampler
is often set to occasionally sample the goal-state. When the nearest
node is expanded, and there is an approximation error, the goal
region is not reached. In a bad case, the node added to the tree
is further away from the goal-state than its parent node. In that
case, renewed sampling of the goal-state will keep giving the same
result. This means the algorithm gets stuck near the goal state, which
we empirically observed in our experiments. To avoid repeating the
same malicious trajectory, we added some noise to the predicted
input. This resolved the goal-state problem in our experiments.

III. EXPERIMENTS

To provide a proof of concept of our algorithm, we tested it on a
pendulum swing up. A torque controlled pendulum has to move from
its stable equilibrium, angle θ = −π, to its unstable equilibrium,
θ = 0. The data generation and cleaning algorithms were run 10
times, to create 10 epochs, with 1000 runs of the RRT algorithm per
epoch.

The results of our experiment are shown in Figures 1 and 2. The
former shows that the tree of a typical run expands neatly through
state-space, with average number of nodes needed to find the target
is 93. These results are similar to [1], and indicate the distance metric
is approximated well. An issue is also visible: there are nodes outside
the figure, and there is a large density of nodes around the goal-state.
This suggests errors in approximating the steering input. The latter
figure shows the computation times, as found during each epoch
seperately. The average time to reach the target over all samples
was 2.4 seconds. The offline phases, simulation and data cleaning,
took approximately 25 minutes per epoch. Both offline and online
phases are an order of magnitude shorter than the algorithm from
[1]. Furthermore, the variation between epochs is small, indicating
the the algorithms performs robustly.

IV. OUTLOOK

We proposed a novel algorithm, RRTcoLearn, that combines
Learning RRT with indirect optimal control. This combination
reduces the number of parameters that describe the steering input,
making it feasible to learn this input. Furthermore, the indirect

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

1 2 3 4 5 6 7 8 9 1 0
0

1

2

3

4

5

Ep och s

P
la

n
n

in
g

 t
im

e
 (

s
)

Fig. 2: Planning times, separated by epoch.

optimal control approach allows the dataset to be generated without
numerical optimization, which is much faster. The RRT coLearn
algorithm was tested on a pendulum swing up, where it performed
10 times faster than the state-of-the-art learning based kinodynamic
RRT.

Currently, we are working to extend our results to multiple degree
of freedom systems. As part of that effort, we incorporate more
sophisticated machine learning during the learning phase of our
algorithm. These algorithms should learn from fewer samples while
handling the bias in the dataset. The second goal we are working
towards is the inclusion of input bounds. The indirect optimal control
approach allows such bounds, but the resulting dataset of optimal
trajectories comes with an additional challenge: the trajectories
overlap for long periods, making them hard to distinguish. Again,
we look for a solution by incorporating/proposing machine learning
techniques that can cope with the relevant issues.

Acknowledgements
This work is part of the research program STW, which is (partly)

funded by the Netherlands Organization for Scientific Research (NWO). The
work leading to these results has also received funding from the European
Communitys Seventh Framework Programme (FP7/2007-2013) under grant
agreement No. 609206.

REFERENCES

[1] M. Bharatheesha, W. Caarls, W. Wolfslag, and M. Wisse. Distance
metric approximation for state-space RRTs using supervised learning.
In ”2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2014)”, pages 252–257, 2014.

[2] J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical
learning, volume 1. Springer series in statistics Springer, Berlin, 2001.

[3] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock. Randomized Kino-
dynamic Motion Planning with Moving Obstacles. The International
Journal of Robotics Research, 2002.

[4] S. M. LaValle and J. J. Kuffner-Jr. Randomized Kinodynamic Planning.
The International Journal of Robotics Research, 20:378–400, 2001.

[5] L. Palmieri and K. O. Arras. Distance Metric Learning for RRT-
based Motion Planning for Wheeled Mobile Robots. In Proceedings of
Machine Learning in Planning and Control of Robot Motion Workshop,
IROS 2014, pages 637–643, 2014.

[6] M. A. Patterson and A. V. Rao. GPOPS-II: A MATLAB software
for solving multiple-phase optimal control problems using hp-adaptive
Gaussian quadrature collocation methods and sparse nonlinear program-
ming. ACM Transactions on Mathematical Software (TOMS), 41(1):1,
2014.

[7] L. S. Pontryagin. Mathematical theory of optimal processes. CRC
Press, 1987.

[8] M. Posa, C. Cantu, and R. Tedrake. A direct method for trajectory
optimization of rigid bodies through contact. The International Journal
of Robotics Research, 33(1):69–81, 2014.

[9] A. V. Rao. A survey of numerical methods for optimal control.
Advances in the Astronautical Sciences, 135(1):497–528, 2009.

[10] Y. Tassa, T. Erez, and E. Todorov. Synthesis and Stabilization of
Complex Behaviors through Online Trajectory Optimization. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 4906–4913, 2012.

[11] Y. Tassa, N. Mansard, and E. Todorov. Control Limited Differential
Dynamic Programming. In IEEE International Conference on Robotics
and Automation, pages 1168–1175, 2014.


