
Course Notes on Neural Networks

Course: Computational Intelligence (TI2736-A)
Delft University of Technology
Author: Thomas Moerland

Contents

1 Introduction 2

2 Notation 2

3 Model architecture 3
3.1 Two-layer neural network . 3

4 Loss Functions 5
4.1 Regression . 5
4.2 Classification . 7

5 Gradient Descent 8
5.1 Stochastic Gradient Descent (SGD) 8
5.2 Backpropagation . 9

6 Summary: Training neural networks 10

1

1 Introduction

For these course notes we focus on parametric, supervised learning.

• Supervised learning describes the problem type. In supervised learning,
we intend to learn a (vector) function mapping f : x→ y, given a dataset
of observed examples (xi,yi), i = 1...N . The learned function is intended
to - for a new datapoint x - make a prediction ŷ (say y ‘hat’, as it not
unobserved).

• Parametric refers to the solution approach. Parametric models fix the
number of elements in the model in advance (i.e., the model is independent
of the size of the dataset). The parameters, denoted by θ, determine the
function that maps x to y.

We may either write f(x; θ) or fθ(x) for the parametrized function that maps
x to y. Parametric supervised learning is probably the largest class of machine
learning approaches. The learning approach to this problem consists of three
fundamental concepts:

1. A parametric model architecture

2. A loss/objective function

3. An optimization method

Deep neural networks (NN) are a particular form of a parametric model
architecture, with associated specific optimization methods. In these notes we
cover these three topics for the NN case. We first summarize notation for
reference.

2 Notation

x Input/independent variable)
y Output/target/dependent variable
D = {x1, y1,x2...xN, yN} Dataset with N examples
ŷ Predicted value of y
θ = {W (i), b(i)} Model parameter set, for network layers i = 1...d
f(x; θ) = fθ(x) Neural network with point prediction (parametrized by θ)
p(y|x) Conditional probability distribution
p(y|x; θ) = pθ(y|x) Neural network with probability distribution as output
W(n) Weight matrix in n-th layer

w
(n)
j,i Weight between i-th node in layer n− 1 to j-th node in layer n

b(n) Bias vector in n-th layer
g(n)(·) Non-linearity / Activation function in the n-th layer
h(n) Hidden units in n-th layer
z(n) Linear activation in the n-th layer, before applying g(·)
L(θ|y,x) Likelihood/loss function
α Learning rate

2

3 Model architecture

A neural network describes a type of parametric function class. It takes as input
some (possibly structured) data vector x ∈ Rm of dimension m, and transforms
this according to parameters θ to an output y (more on different output types
in the loss function section). The important distinction between data (x,y)
and parameters θ is that the data is observed (and therefore fixed), while the
parameters will be learned/changed. We do not know the correct parameter
setting in advance. Therefore, the parametric model basically describes a space
of functions, i.e., for each parameter setting we get a different function, and
our optimization will search over this space of functions. The way in which we
combine our data and the parameters is the model architecture, and depending
on our choices the model function space will be larger or smaller. We usually
call the size of the function space that a particular class can approximate the
capacity of the model. Deep neural networks are especially popular because they
are high-capacity models that can handle high-dimensional input data x.

Our network outputs a prediction for the target, which we denote by ŷ. The
overall network is then specified by:

ŷ = f(x; θ) = fθ(x)

3.1 Two-layer neural network

We will now discuss the standard two-layer feedforward network (= multi-layer
perceptron (MLP)), which is a particular type of parametric model architecture.
The term feedforward refers to the fact that there are no feedback connections
in the network, i.e., we feed in x and the computation moves forward through
the network to predict a ŷ. Networks usually consist of several layers, where
each layer effectively performs a non-linear regression.

The linear transformation We first construct a linear transformation of
the input x. We assume the input vector x ∈ Rm of size m maps to an output
vector z ∈ Rn of size n. We then need a weight matrix of size n ×m and a
bias vector of size n to construct the linear transformation:

z = Wx + b

This describes a set of n linear regressions, where the weight matrix and
biases are the adjustable parameters (part of θ).

The activation function We then apply an element-wise non-linearity g(·)
to the output of the linear part z. Element-wise means that the function g(·)
is applied to every element in the vector z. The main requirement is that
the non-linearity should be differentiable (although the ReLu actually is not
differentiable at 0, but we ignore this issue here). We list and visualize a few
common choices for the activation function:

3

1. Rectifier linear unit (ReLu): g(z) =

{
0, if z < 0

z, if z ≥ 0

2. Exponential linear unit (ELU): g(z) =

{
ez − 1, if z < 0

z, if z ≥ 0

3. Sigmoid: g(z) =
1

1 + e−z

4. Hyperbolic tangent (Tanh): g(z) = tanh(z)

Figure 1. Activation functions.

Older work on neural networks mostly utilized sigmoid and tanh activations,
but more recent work shows better performance for partially linear units (Relu
and Elu). Their main benefit is that optimization turns out to be easiest in
the linear setting, as gradients backpropagate most easily through linear layers
(the gradient may vanish in ’flat’ regions of the non-linearity). Moreover, it is
interesting to note that ReLu units were actually developed from bio-inspiration.
The underlying observations in neuroscience are that neurons are 1) sometimes
completely inactive, 2) when active the output is usually proportional to the
input and 3) most neurons are usually inactive (i.e. activations are sparse).

Multiple layers and stacking We may compose the linear transformation
and the non-linearity into one network layer:

h = g(Wx + b)

The key idea of neural networks is to repeatedly apply such layer-wise trans-
formations, known as layer stacking. For a two-layer neural network, the trans-

4

formations are:

ŷ = f (2)(f (1)(x))

where we use superscripts (·) to identify the layer number. The first layer of
this network computes:

h(1) = f (1)(x|θ) = g(1)(W(1)x + b(1))

The hidden layer h is then fed into the next layer.

ŷ = f (2)(h(1)|θ) = W(2)h(1) + b(2)

Because this is the last layer, we do not apply a non-linearity g(·) to the
output. This ensures that we can predict a value for ŷ on the entire real line
(else we would restrict the values we can predict). Depending on the type of
y variable we may add some other non-linear function, such as the softmax
function in case of classification, or the exp function if we want to predict a
standard deviation. You will read more about this in the section about loss
functions. For now, we simply ignore the non-linearity in the last layer.

We can also write the network as one transformation:

ŷ = fθ(x) = W(2)g(1)(W(1)x + b(1)) + b(2)

In this example, the trainable parameters are given by θ = {W(1),W(2),b(1),b(2)}.
Given a parameter setting of θ, we will get a prediction ŷ for each value of x
that we feed in. In the next section we describe how to construct a loss function,
which measures how well the current prediction matches the true target in the
dataset, and serves as an objective during training.

4 Loss Functions

The type of loss function strongly depends on the type of target variable y. If the
target is continuous, then we call it regression. In that we case we do not need
a non-linearity in the last layer, to ensure that we can predict on the entire real
line. On the contrary, when the target is discrete, we call it classification, and
we usually need a non-linearity to decide between the classes. The second import
distinction between loss types are the deterministic versus probabilistic loss
functions.

4.1 Regression

Mean-Squared Error We first focus on the probably best-known loss func-
tion, the mean-squared error (MSE). This is a deterministic regression loss.
The loss function takes the squared error between the prediction of the net-
work, ŷi = f(xi; θ), and the true observation in the dataset, yi (per datapoint
i):

5

L(θ|y,x) = ED

[(
f(x; θ)− y

)2]
=

1

N

N∑
i=1

(
f(xi; θ)− yi

)2
The squaring of the error ensure that we penalize both positive and negative

errors (in equal amount). As an alternative, we could also use the absolute
error, |f(xi; θ)− yi|, but the squared error is more easily to differentiate.

Maximum Likelihood The main idea of probabilistic losses is to use the
function approximator to not predict ŷ directly, but rather to predict the pa-
rameters of a probability distribution from which the observed y is a sample.
The benefit is that we can model stochastic outputs and observation noise, and
it also gives a principled way to construct loss functions.

We first note that the dataset D is actually a representation of a true data
distribution pdata in the real world (from which we collected the data). We
call the observed dataset the it empirical distribution, and denote it by p̂data.
We should clearly discriminate this distribution from the model distribution
pmodel = pθ(y|x), which is the probability distribution that our neural network
predicts (for the probabilistic loss setting). We of course want our neural net-
work to match the true (unknown) data distribution pdata as closely as possible.
A popular idea to achieve this is to maximize the probability (likelihood) of our
data under the model, i.e.:

L = E(x,y)∼p̂data

[
pθ(y|x)

]
where E(x,y)∼p̂data

means the expectation over the dataset. The above
objective is known as maximum likelihood estimation (MLE). In the neural
network context introduced before, this becomes (now writing dataset D for the
empirical distribution again):

L(θ|y,x) = ED

[
pθ(y|x)

]
=

N∏
i=1

pθ(yi|xi)

Maximum Likelihood for Regression To construct a likelihood we first
need to assume a distribution for our dependent variable. In case our y variable
is continuous, the best known choice is to specify a Normal outcome distribution,
pθ(y|x) = Nθ(y|x). We use our neural network to predict a mean µ(x; θ) and
standard deviation σ(x; θ) (i.e., we specify a network with two output heads,
one for the mean, and one for the standard deviation. Note that σ should be
larger than zero by definition, so we usually add some non-linearity that will
ensure this for the σ head, for example exp function). If we assume that all
our observations are i.i.d. (independently identically distributed), the we may
write the joint likelihood as the product of the likelihood over all individual
datapoints:

6

L(θ|y,x) =

N∏
i=1

N (yi|µ(x; θ), σ(x; θ))

We usually log transform the above equation (the log function is monotone,
so it does not change the optimum, and it has the nice property of changing
the product in to a sum), and because we usually want to minimize a quantity
we negate the objective. The loss function L then becomes the negative log-
likelihood (NLL):

NLL = L(θ|y,x) = −
N∑
i=1

logN (yi|µ(x; θ), σ(x; θ))

In most applications with a continuous outcome (regression) we ignore σ by
putting it at σ = 1. It turns out that, when we ignore σ, the above NLL cost
is actually equal to minimizing the mean-squared error (MSE) loss introduced
above (the loss is differs by a constant, but the optimal parameters are the
same). This makes a nice connection between MSE and MLE training for the
regression case. We will not go into further detail here, but remember that
the parameter setting that minimize the MSE loss (/objective) is equal to the
parameters setting that maximizes the likelihood under a Normal distribution
(when ignoring σ, i.e. for µ only).

4.2 Classification

Maximum Likelihood for discrete y Probability theory is also the usual
path to specify a loss function for the classification setting. A probability distri-
bution over k classes is given by k class probabilities under the constraint that∑
k pk = 1. Therefore, we will implement our neural network to predict k dif-

ferent values on the real line (i.e. with no non-linearity yet). We then apply the
softmax classifier, which approximates the above class probabilities pk. The
last linear layer gives us a vector f of length k each containing the unnormalized
log probability of each class. We define the cross-entropy loss as:

L(θ|y,x) = −
N∑
i=1

log p(yi|x) = −
N∑
i=1

log
(efyi (x)∑

j e
fj(x)

)
where fyi is the network head belonging to the true data class (yi), and j

indexes over the entire vector f . Intuitively, we first take the exp of all output
nodes to make the numbers ≥ 0 (they should become probabilities), and then
we normalize the terms to sum up to 1 (by dividing over their sum) to make it
a valid probability distribution. The loss term then consists of the probability
of the correct class, which is the quantity that we want to maximize. Note that,
apart from pushing the probability of the correct class up, this loss also tries to
push the probability of the wrong class labels down (due to the normalization
term in the denominator).

7

5 Gradient Descent

All optimization problems depart from a loss function, also known as the
objective, cost or error function. We are generally looking for the parameter
setting θ? that minimizes the objective:

θ? = arg min
θ
L(θ|y,x)

Optimization methods frequently utilize the derivative of the loss function
with respect to the parameters. When the function has multiple parameters
(i.e., θ is usually a vector/matrix of inputs) then we need the partial derivatives
∂L
∂θj

, for the derivative with respect to the j-th element of θ. The gradient,

denoted by ∇θL, is the generalized notion of the derivative in the case where
the input is higher-dimensional, i.e. the gradient is the vector/matrix with all
the partial derivatives.

The main idea of gradient descent is to iteratively move the parameters in
the direction of the negative gradient. This gives the following update rule:

θ′ = θ − α∇θL(θ)

where θ is the old parameter setting, θ′ is the updated parameter setting,
and α is a learning rate. The learning rate decides how far we move in the
direction of the gradient per step, and is a very important hyperparameter in
neural network training. It should not be too small (or you will never make any
progress in the optimization space) nor too large (or you will jump too far and
optimization will be unstable).

Note that the objective function is the context of (deep) non-linear neural
networks is generally non-convex. This implies that we are not garuanteed to
reach the global optimal, but usually have to settle for a local optimum. In
practice, the optimization algorithms usually manage to find reasonably good
local optima.

5.1 Stochastic Gradient Descent (SGD)

Stochastic Gradient Descent (SGD) is a variant of gradient descent that scales to
larger datasets. As a concrete example, we will assume the MSE loss introduced
above. The gradient is given by:

∇θL(θ|y,x) =

N∑
i=1

∇θ
(
f(xi; θ)− yi

)2
However, when the size N of the dataset D grows larger, then the above

summation becomes very computationally expensive. Therefore, most practical
algorithms approximate the above gradient from a much smaller sample. Such
a subsample from the dataset is called a minibatch of size m(usual choices of
m are 32 or 64). The SGD gradient then becomes:

8

grad =

m∑
i=1

∇θ
(
f(xi; θ)− yi

)2
It turns out that this algorithms works very well in practice. It may not

reach the global optimum, or even a local one, but it is able to reduce the cost
function to a low value in reasonable time. The main benefit of the algorithm
is that it scales to large datasets (as we can keep m fixed to a small number,
independent of dataset size N).

5.2 Backpropagation

To implement the SGD update rule, we need the partial derivative of the cost
L with respect to every parameter in θ. We can efficiently calculate these
derivatives with the backpropagation algorithm (better known as ‘backprop’).
Backpropagating effectively propagates the error signal derived from the loss
function back through the network, to figure out in which direction each pa-
rameter should be changed to make the total loss smaller. The backpropagation
algorithm is based on two concepts: a) the chain rule of Calculus and b) efficient
storage of gradients.

a) The chain rule of Calculus As we saw in the previous section, neural
networks are essentially a sequence of differentiable transformations. We first
revisit the chain rule of Calculus, which gives us an expression for the derivative
of a composed function. Let z = f(x) and h = g(z) = g(f(x)), then the chain
rule gives us an expression for the derivative of h with respect to x: dh

dx = dh
dz

dz
dx .

In words, we are ’chaining’ the derivatives of each individual transformation in
the sequence.

These ideas generalize to the vector variable case, where we see the partial
derivatives appearing again. For some x ∈ Rm and z ∈ Rn, with h = g(z) and
z = f(x), we have:

dh

dxi
=
∑
j

∂h

∂zj

zj
xi

.
In words, we sum the gradient over all the paths through the hidden vari-

ables z that reach the variable xi. Note that the ∂z
∂x terms together form a

matrix of first derivatives, known as the Jacobian (not to be confused with the
Hessian, which is a matrix of second derivatives). In neural networks, we usually
manipulate matrices of more than 2 dimensions, better known as tensors. The
above equations equally apply to the case of tensors.

b) Efficiently computing the gradient The above rule gives us an expres-
sion for the gradient of the loss with respect to every parameter in our model
∂L
∂θi

. However, because we need to evaluate all paths between the loss and the
specific parameter, and the number of paths grows exponentially with the depth

9

(number of layers) and width (number of nodes per layer) of the network, this
quickly becomes too computationally expensive in larger networks. The key ob-
servation of the backpropagation algorithm is that we can efficiently store and
reuse the gradients by ’walking backwards’ through the network/computational
graph. We will first give a conceptual algorithm, and then highlight some details.

Backpropagation algorithm
grad = ∇ŷL differentiate the loss w.r.t. the network prediction
for d in D,D − 1, ..., 1:

grad← ∇z(d)L = grad� dg(d)

dz
(d)
j

propagate through non-linearity

∇b(d)L = grad gradients for biases in layer d
∇W(d)L = grad · h(d−1) gradients for weights in layer d
grad← ∇h(d−1)L = grad ·W(d) propagate gradients to hidden units of next layer d− 1

We quickly walk through the algorithm in words. We first differentiate the
loss with respect to the network output ŷ (or equivalently some probability dis-
tribution parameters in case of maximum likelihood estimators). When then
start to loop backwards through all the layers (the network has D layers),
accumulating and storing the gradients. We first propagate through the non-
linearities to z(d) (this is usually an element-wise operation). Then, we compute
the derivatives of the linear part z(d) = W(d)h(d−1) + b(d), and store the gra-
dients with respect to W(d) and b(d). Then, we propagate the gradient to the
next layer by differentiating with respect to h(d−1), and repeat. Overall, this
algorithm scales linearly in the number of parameters and network depth.

6 Summary: Training neural networks

This concludes our treatment of neural network training. The only topic we did
not discuss is network initialization. There is much more to be said about
this, but the important thing to remember is that we should not initialize all
network weights to 0 or to the same value, because this will create a symmetry
that will prohibit the weights to ever become dissimilar. Therefore, we should
always randomly initialize the network weights from some underlying noise dis-
tribution. In summary, we then repeatedly run the following loop:

1. Draw a minibatch

2. Forward propagate: ŷi = fθ(xi) (or params of prob. distribution)

3. Compute loss: L(ŷi, yi)

4. Backpropagate the loss through the network: ∇θL

5. Update the network weights with gradient descent: θ ← θ − α∇θL

10

