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Discrete versus continuous functions

A function f Domain:

Set in which 
the function 

takes its input

Range:

Set in which 
the function 

takes its output

Can both be either discrete or continuous!
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Discrete probability distribution

- Parameters: p
1
, p

2
,.., p

n-1

- Probability mass:

Discrete versus continuous probability

Continuous probability distribution

- Parameters: depends on distribution,

e.g. normal distribution μ,σ

- Probability density:

e.g.

Parameters define the 
entire distribution
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Discrete states

(board states)

Continuous states

(joint angles)

Sequential decision making



Discrete states

Discrete actions

(moves)

Continuous states

Continuous actions

(torques/voltages on motors)

Sequential decision making



Continuous Markov Decision Process

Principles stay largely the same
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Continuous Markov Decision Process

 

Definition of MPD:

State 
space

Action 
space

Transition 
function

Reward 
function

Discount
Start state 
distribution

continuous spaces continuous density
(if state space continuous)
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Continuous Markov Decision Process
 

We define a policy: 

- Stochastic policy 

- Deterministic policy

If action space continuous: continuous density continuous number 

Extensively discuss policy representation in next section
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Continuous Markov Decision Process
 

The average cumulative return are the value V(s) and state-action value Q(s,a)

These value functions have recursive relations = Bellman equation
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Continuous Bellman equations

Bellman equation:

Continuous state & action space

In expectations: summation becomes integration
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Goal of RL & MDP search

Objective:  Value of the start state (= expected cumulative reward)

function of policy (parameters)

Goal:  Find the optimal policy

policy that achieves the highest average cumulative reward



3. Representing the solution
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Policy = mapping from state to (probability distribution over) actions

= 

supervised learning problem

Representing the solution

a / π(a)

s



Supervised learning
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1) represent this mapping

2) improve the policy from data

Parametric
(e.g. table, neural network)

Non-parametric
(e.g. Gaussian Process, k-NN)



Supervised learning

How may we:

1) represent this mapping

2) improve the policy from data

Parametric Non-parametric



Parametric supervised learning

How may we:

1) represent this mapping

2) improve the policy from data



Parametric supervised learning

How may we:

1) represent this mapping

2) improve the policy from data

Tabular Function approximationParametric
model type



Parametric supervised learning

How may we:

1) represent this mapping

2) improve the policy from data

Tabular
e.g., table, parameters are entries

(planning & RL)

Function approximation
e.g. neural network

(RL)

Parametric
model type



Parametric supervised learning

How may we:

1) represent this mapping

2) improve the policy from data

Global Local

Tabular
e.g., table, parameters are entries

(planning & RL)

Function approximation
e.g. neural network

(RL)

Validity

Parametric
model type



Parametric supervised learning

How may we:

1) represent this mapping

2) improve the policy from data

Global

solution for entire input space

(RL)

Local

solution for local region of input space

(planning)

Tabular
e.g., table, parameters are entries

(planning & RL)

Function approximation
e.g. neural network

(RL)

Validity

Parametric
model type



Parametric supervised learning

How may we:

1) represent this mapping

2) improve the policy from data

Global

solution for entire input space

(RL)

Local

solution for local region of input space

(planning)

Tabular
e.g., table, parameters are entries

(planning & RL)

Function approximation
e.g. neural network

(RL)

Validity

Parametric
model type



Parametric supervised learning

How may we:

1) represent this mapping

2) improve the policy from data

Global

solution for entire input space

(RL)

Local

solution for local region of input space

(planning)

Tabular
e.g., table, parameters are entries

(planning & RL)

Function approximation
e.g. neural network

(RL)

Validity

Parametric
model type

?
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Representing the solution

How should we represent this function?

Input space characteristics 
mostly determine model type
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Tabular representation

Policy table

State-action value table



Tabular representation

Policy table

State-action value table

Table entries are 
the parameters!
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Curse of dimensionality

The size/cardinality of a space scales exponentially in it dimensionality

Problem for tables!
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2. Dim of 
input 
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1. Type of space
2. Dimensionality



Function approximation

1. Specify parametrized function from input to output
2. Specify objective/loss
3. Optimize parameters to minimize loss

Examples: linear regression, neural networks
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Discretization

Works for low-dimensional input (state) spaces, 
but also suffers from the curse of dimensionality

A first approach to store the solution for continuous input spaces is discretization



Discretization

A first approach to store the solution for continuous input spaces is discretization

As a second solution, function approximation always works for continuous input
& scales to high dimensions
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Tabular or function approximation

1. Type of input space

2. Dim of 
input 
space

Two main aspects of S:

1. Type of space
2. Dimensionality

In short: small problems discretization, larger problems function approximation



Representing the solution

How should we represent this function?

Input space characteristics

mostly determine model type



Representing the solution

How should we represent this function?

Output space determines 

type of policy
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Three main considerations for A:

1. Type of action space: discrete - continuous
2. Choice of representation: implicit (value-based) - explicit (policy-based) - both (actor-critic)
3. Choice of probabilistic: stochastic - deterministic
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Implicit policies (= value-based RL)

Learn a state(-action) 
value functionMake policy a hardcoded 

function of value function
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Implicit policies (= value-based RL)

Deterministic examples

“greedy policy”

“UCT policy”
(MCTS)

Note that the UCT policy is stochastic over multiple 
samples, since n(s,a) will change over multiple steps!
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Implicit policies (= value-based RL)
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Implicit policies (= value-based RL)

Stochastic example

“Boltzmann policy”

All examples for discrete action space!

Does it also work for continuous action spaces?
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Implicit policies (= value-based RL)

All implicit policies require a form of maximization 
(to give better actions higher chance of selection)

Discrete action space:

easy maximization

a a

Q(s,a) Q(s,a)

Continuous action space:

tough! (entire new maximization)
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Two main aspects of A:

1. Type of policy (implicit or explicit)
2. Type of space (discrete versus continuous)

Implicit policies (as widely used in search and value-based RL) 
not really useful in continuous action space!
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Explicit policies (= policy-based RL)

Direct map S to p(A) or A

Discrete action space:

- Deterministic discrete policy

=  uncommon, since argmax is not differentiable
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Explicit policies (= policy-based RL)

Softmax turns vector of real numbers 
into discrete probability distribution

Direct map S to p(A) or A

Discrete action space:

e.g. 
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Direct map S to p(A) or A

Continuous action space

- Deterministic policy:  simply predict a real number 

To make it a probability: 
can think of it as the mean 

of a Gaussian with fixed 
variance
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Explicit policies (= policy-based RL)

Direct map S to p(A) or A

Continuous action space

- Stochastic policy:  predict the parameters of a continuous distribution!

 

Some parameters have restrictions, e.g., a standard deviation should be positive
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Actor-critic (= value + policy)

Can combine an explicit policy and a value network!

Usually the value function will help the policy update:

1. For bootstrapping
2. For baseline subtraction

3. As a direct target to maximize

 

We will encounter these settings after the break



Three representations of solution



Three representations of solution



Three representations of solution

Property of environment



Three representations of solution

Property of environment

Own
choices



Three representations of solution

Property of environment

Own
choices

No need to understand this now, full summary in lecture notes
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Small = discretization, large = function approximation 
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Summary first part

After break: policy-based RL methods

1. Continuous state space:

Small = discretization, large = function approximation 

 

2. Continuous action space:

Requires an explicit policy



Break
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Value-based RL

See other lectures &

lecture notes
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Value-based versus policy-based

Value-based RL Policy-based RL
= policy search

Actor-critic

SARSA

Q-learning

Deep Q-network

AlphaZero

We will now take a closer 
look at policy-based RL
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Optimization problem
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The reinforcement learning objective

Gradient-based optimization
(policy gradients)

Gradient-free optimization
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Gradient-based
= policy gradients

AlphaZero

Gradient-free 
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Value-based versus policy-based

Value-based RL Policy-based RL
= policy search

Actor-critic

SARSA

Q-learning

Deep Q-network

Policy gradients
AlphaZero

Evolutionary 
policy search

Deterministic

pol.grad.

REINFORCE

REINFORCE

with value func



4. Policy gradients
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Gradient ascent

Objective Gradient ascent
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Gradient ascent

Objective Gradient ascent
(pseudocode)

We will derive the gradient 
of the expected return w.r.t 

the policy parameters



Gradient ascent

Objective Gradient ascent
(pseudocode)

We need a derivative of an 
expectation: appears all over 

machine learning!
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Interested in derivative of expectation:

We will use the log derivative identity: 
         (derivative of log + chain rule)

Differentiate through an expectation
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1. Log derivative trick

Many other names:

● Reinforcement learning: REINFORCE
● Statistics: score function estimator, likelihood ratio method
● Machine learning: black-box variational inference 
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1. Log derivative trick

Many other names:

● Reinforcement learning: REINFORCE
● Statistics: score function estimator, likelihood ratio method
● Machine learning: black-box variational inference 

2. Reparametrization trick 
[not in this course, but e.g. used in variational auto-encoders (deep learning)]

Differentiate through an expectation
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Interpretation of log-derivative trick

Lot of equations, but what does intuitively happen with this gradient?

sample x push up p(x) with strength f(x)
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Interpretation of log-derivative trick

Lot of equations, but what does intuitively happen with this gradient?

“Push p(x) up where 
f(x) is higher”

= “zero-order gradient”



Back to RL objective



Back to RL objective

Simply apply the 
log-derivative trick!



Back to RL objective

Still need to find the 
derivative of the trace 

probability



Derivative of trace probability



Derivative of trace probability

Initial state
distribution

Policy 
probabilities

Transition 
probabilities



Derivative of trace probability



Derivative of trace probability

Derivative does not depend on (unknown) initial state 
distribution and transition distribution



Derivative of trace probability



Back to RL objective
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Back to RL objective

Return of the 
entire trace

Sum over 
each timestep 
in the trace

Derivative of 
log policy



Back to RL objective

Makes sense to move R(h
0
) inside the sum,

since return of action only depends on future rewards
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Policy gradient theorem
a.k.a. REINFORCE

When you use automatic differentiation software, like Tensorflow or Pytorch, you 
would implement the following loss:

Minus since loss 
gets minimized

Sample M traces Derivative of this expression is 
the policy gradient



Interpretation of policy gradient



Interpretation of policy gradient

You “reinforce” the actions which give good returns



Interpretation of policy gradient



“Encourage each state-action pair in the successful traces”

“Discourage each state-action pair in the unsuccessful traces”

Interpretation of policy gradient



Deterministic policy:

Stochastic policy:

Exploration in policy gradient
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Deterministic policy:

- Add noise, e.g., Gaussian:

Stochastic policy:

- Simply sample from policy 

- Add entropy regularization

Exploration in policy gradient

Risk of collapse!

Optimize return but trade-off against high-entropy (broad) policy



Monte Carlo Policy Gradient

Algorithm in lecture notes!



5. Actor-critic
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bootstrap

(unless n=∞)
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Estimating cumulative reward

Off-policy

and

On-policy

and/or

General formulation of cumulative reward estimation 
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Why bootstrap?

(n=∞)(n=1)

Bias-variance trade-off for the return estimate depth (n)
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Actor-critic policy gradient with bootstrap

1. Collect trace

2. Estimate cumulative return for each step in trace

3. Train value network, e.g., on squared loss

4. Train policy with policy gradient



Actor-critic policy gradient with bootstrap

Full algorithm in lecture notes
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1. Within policy gradient theorem:

a. Bootstrapping lower variance in cumulative reward estimate

b. Baseline subtraction lower variance in gradient estimate

2. Other type of update:
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Baseline subtraction

trace 1 R = +75

trace 2 R = +70

trace 3 R = +65

Probability of all actions will be pushed up, just trace 1 gets pushed harder
(when we sample 3 without 1, then 3 will still go up) 
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Baseline subtraction

trace 1 R = +5

trace 2 R = 0

trace 3 R = -5

Now it would work much better!
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Advantage function

Most common baseline is state value:

gives the “advantage”, i.e., 

“how much better is an action than the state average”
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General policy gradient formulation

These principles apply to all reinforcement learning (also value-based)!



Use a value function to potentially get a better policy gradient update

1. Within policy gradient theorem:

a. Bootstrapping lower variance in cumulative reward estimate

b. Baseline subtraction lower variance in gradient estimate

2. Other type of update:

a. Deterministic policy gradient

Actor-critic
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Deterministic policy gradient

- Alternative policy gradient approach
- Only conceptually discussed (short)



Deterministic policy gradient



Deterministic policy gradient

Value-based RL

E.g. deep Q-network 
(DQN)
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same way



Deterministic policy gradient

1. Train critic in 
same way

2. Train actor by 
pushing gradient 

through the actions 



Deterministic policy gradient

= Deterministic policy gradient
(only need to understand concept)



6. Gradient-free policy search
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Gradient-free optimization

Can also do gradient-free optimization:

- Evolutionary strategies
- Cross-entropy method
- Simulated annealing

Population-based

Received less attention in RL 
and ML compared to 

gradient-based optimization, 
but start to resurface!
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Cross-entropy method

Very simple policy search method & often a strong baseline



Cross-entropy method

Very simple policy search method & often a strong baseline



Cross-entropy method

Very simple policy search method & often a strong baseline

Pseudo-code in lecture notes



Summary & Assignments



Summary

First half:



Summary

First half:

- Continuous RL is important for the real world!



Summary

First half:

- Continuous RL is important for the real world!
- It does not alter the MDP specification much. 



Summary

First half:

- Continuous RL is important for the real world!
- It does not alter the MDP specification much. 
- It does alter the way we should specify our solution, with focus on policy-based 

and actor critic approaches.



Summary

First half:

- Continuous RL is important for the real world!
- It does not alter the MDP specification much. 
- It does alter the way we should specify our solution, with focus on policy-based 

and actor critic approaches.

Second half:

- Policy-based approaches can be gradient-based (policy gradients) or gradient-free. 



Summary

First half:

- Continuous RL is important for the real world!
- It does not alter the MDP specification much. 
- It does alter the way we should specify our solution, with focus on policy-based 

and actor critic approaches.

Second half:

- Policy-based approaches can be gradient-based (policy gradients) or gradient-free. 
- Gradient-based: 

- The cardinal policy gradient algorithm use the policy-gradient theorem. 



Summary

First half:

- Continuous RL is important for the real world!
- It does not alter the MDP specification much. 
- It does alter the way we should specify our solution, with focus on policy-based 

and actor critic approaches.

Second half:

- Policy-based approaches can be gradient-based (policy gradients) or gradient-free. 
- Gradient-based: 

- The cardinal policy gradient algorithm use the policy-gradient theorem. 
- This also has various actor-critic extensions. 



Summary

First half:

- Continuous RL is important for the real world!
- It does not alter the MDP specification much. 
- It does alter the way we should specify our solution, with focus on policy-based 

and actor critic approaches.

Second half:

- Policy-based approaches can be gradient-based (policy gradients) or gradient-free. 
- Gradient-based: 

- The cardinal policy gradient algorithm use the policy-gradient theorem. 
- This also has various actor-critic extensions. 
- An alternative policy gradient approach are deterministic policy gradients. 



Summary

First half:

- Continuous RL is important for the real world!
- It does not alter the MDP specification much. 
- It does alter the way we should specify our solution, with focus on policy-based 

and actor critic approaches.

Second half:

- Policy-based approaches can be gradient-based (policy gradients) or gradient-free. 
- Gradient-based: 

- The cardinal policy gradient algorithm use the policy-gradient theorem. 
- This also has various actor-critic extensions. 
- An alternative policy gradient approach are deterministic policy gradients. 

- Gradient-free:
- Cross-entropy method
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