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Part I

Mathematical preliminaries
This section quickly recaps some of the mathematical notation of: 1) sets & func-
tions, and 2) probability distributions. You should have seen these in previous
courses, but we will need them throughout the lecture notes, and to understand
RL in general. We will also discuss how to differentiate through an expectation,
which frequently appears throughout machine learning.
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1 Sets and functions

1.1 Sets

Discrete set A set of countable elements.

Examples:

• X = {1, 2, .., n} (integers)

• X = {up,down,left,right} (arbitrary elements)

• X = {0, 1}d (d-dimensional binary space)

Continuous set A set of connected elements.

Examples:

• X = [2, 11] (bounded interval)

• X = R (real line)

• X = [0, 1]d (d-dimensional hypercube)

Conditioning a set We can also condition within a set, by using : or |. For
example, the discrete probability k-simplex, which is what we actually use to
define a discrete probability distribution over k categories, is given by:

X = {x ∈ [0, 1]k :
∑
k

xk = 1}.

This means that x is a vector of length k, consisting of entries between 0 and
1, with the restriction that the vector sums to 1.

Cardinality and dimensionality It is important to distinguish the cardinal-
ity and dimensionality of a set:

• The cardinality (size) counts the number of elements in a vector space, for
which we write |X |.

6



• The dimensionality counts the number of dimensions in the vector space
X , for which we write Dim(X ).

Examples:

• The discrete space X = {0, 1, 2} has cardinality |X | = 3 and dimen-
sionality Dim(X ) = 1.

• The discrete vector space X = {0, 1}4 has cardinality |X | = 24 = 16
and dimensionality Dim(X ) = 4.

Cartesian product We can combine two space by taking the Cartesian prod-
uct, denoted by ×, which consist of all the possible combinations of elements in
the first and second set:

X × Z = {(x, z) : x ∈ X , z ∈ Z}
We can also combine discrete and continuous spaces through Cartesian products.

Example: Assume X = {20, 30} and Z = {0, 1}. Then

X × Z = {(20, 0), (20, 1), (30, 0), (30, 1)}

.
Assume X = R and Z = R. Then X × Z = R2.

1.2 Functions

• A function f maps a value in the function’s domain X to a (unique) value
in the function’s co-domain/range Y, where X and Y can be discrete or
continuous sets.

• We write the statement that f is a function from X to Y as

f : X → Y

Examples:

• y = x2 maps every value in domain X ∈ R to range Y ∈ R+
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2 Probability distributions

A probability distribution is a mathematical function that gives the probability
of the occurrence of a set of possible outcomes. The set of possible outcomes is
called the sample space, which can be discrete or continuous, and is denotes by
X . For example, for flipping a coin X = {heads, tails}. When we actually sample
the variable, we get a particular value x ∈ X . For example, for the first coin
flip x1 = heads. Before we actually sample the outcome, the particular outcome
value is still unknown. We say that it is a random variable, denoted by X, which
always has a associated probability distribution p(X).

Sample space (a set) X

Random variable X

Particular value x

Depending on whether the sample space is a discrete or continuous set, the
distribution p(X) and the way to represent it differ. We detail both below.

2.1 Discrete probability distributions

• A discrete variable X can take values in a discrete set X = {1, 2, .., n}. A
particular value that X takes is denoted by x.

• Discrete variable X has an associated probability mass function: p(X),
where p : X → [0, 1].
- Each possible value x that the variable can take is associated with a prob-
ability p(X = x) ∈ [0, 1].
- For example, p(X = 1) = 0.2, i.e., the probability that X is equal to 1 is
20%.

• Probability distributions always sum to 1, i.e.:
∑
x∈X p(x) = 1.

Parameters We represent a probability distribution with parameters. For a
discrete distribution of size n, we need n−1 parameters, i.e., {px=1, .., px=n−1},
where px=1 = p(x=1). The probability of the last category follows from the sum

to one constraint, i.e., px=n = 1−
∑n−1
i=1 px=i.
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Example: A discrete variable X that can take three values (X =
{1, 2, 3}), with associated probability distribution p(X = x):

p(X = 1) p(X = 2) p(X = 3)
0.2 0.4 0.4

Representing discrete random variables It is important to realize that we
always represent a discrete variable as a vector of probabilities. Therefore, the
above variable X does not really take values X = {1, 2, 3}, because 1, 2 and 3 are
arbitrary categories (i.e., category two is not twice as much as the first category).
We could just as well have written X = {a, b, c}. Always think of the possible
values of a discrete variable as separate entries. Therefore, we should represent
the value of a discrete variable as a vector of probabilities. In the data, when
we observe the ground truth, this becomes a one-hot encoding, where we put all
mass on the observed class.

Example: In the above example, we had (X = {1, 2, 3}). Imagine we
sample X three times and observe 1, 2 and 3, respectively. We would
actually represent these observations as

Observed category Representation
1 (1, 0, 0)
2 (0, 1, 0)
3 (0, 0, 1)

2.2 Continuous probability distributions

• A continuous variable X can take values in a continuous set, e.g., X = R
(the real line), or X = [0, 1] (a bounded interval).

• Continuous variable X has an associated probability density function: p(X),
where p : X → R+ (a positive real number).

• In a continuous set, there are infinitely many values that the random value
can take. Therefore, the absolute probability of any particular value is 0.

• We can only define absolute probability on an interval, i.e., p(a < X ≤ b) =∫ b
a
p(x).
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Figure 1: Examples of discrete (left) versus continuous (right) probability disti-
bution.

- For example, p(2 < X ≤ 3) = 0.2, i.e., the probability that X will fall
between 2 and 3 is equal to 20%.

• The interpretation of an individual value of the density, like p(X = 3) = 4,
is only a relative probability. The higher the probability p(X = x), the
higher the relative chance that we would observe x.

• Probability distributions always sum to 1, i.e.:
∫
x ∈ Xp(x) = 1 (not that

this time we integrate instead of sum!).

Parameters We need to represent a continuous distribution with a parameter-
ized function, that for every possible value in the sample space predicts a relative
probability. Moreover, we need to obey the sum to one constraint. Therefore,
there are many parameterized continuous probability densities. An example is
the Normal distribution. A continuous density is a function p : X → R+ that
depends on some parameters. Scaling the parameters allows variation in the
location where we put probability mass.
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Table 1: Comparison of discrete and continuous probability distributions.

Discrete distribution Continuous distribution
Input/sample space Discrete set,

e.g. X = {0, 1},
with size n = |X |

Continuous set,
e.g. X = R

Probability function Probability mass function
(pmf)

p : X → [0, 1]

such that
∑
x∈X p(x) = 1

Probability density function
(pdf)

p : X → R

such that
∫
x∈X p(x) = 1

Possible parametrized
distributions

Various, but only need simple
Discrete

Various, e.g.
Normal, Logistic, Beta, etc.

Parameters {px=1, .., px=n−1} Depends on distribution,
e.g. for normal: {µ, σ}

Number of parameters n−1 = |X |−1
(Due to sum to 1 constraint)a

Depends on distribution,
e.g., for normal: 2

Example distribution
function

p(x = 1) = 0.2
p(x = 2) = 0.4
p(x = 3) = 0.4

e.g. for normal p(x|µ, σ) =
1

σ
√

2π
exp

(
− (x−µ)2

2σ2

)
Absolute probability p(x = 1) = 0.2 p(3 ≤ x < 4) =

∫ 4
3 p(x) = 0.3

(on interval)b

Relative probability - p(x = 3) = 7.4

aDue to the sum to 1 constraint, we need one parameter less than the size of the sample
space, since the last probability is 1 minus all the others: pn = 1−

∑n−1
i=1 pi.

bNote that for continuous distributions, probabilities are only defined on intervals. The
density function p(x) only gives relative probabilities, and therefore we may have p(x) > 1,
like p(x = 3) = 5.6, which is of course not possible (one should not interpret it as an absolute

probability). However, p(a ≤ x < b) =
∫ b
a p(x) < 1 by definition.
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Example: A variable X that can take values on the real line with distri-
bution

p(x;µ, σ) =
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
.

Here, the mean parameter µ and standard deviation σ are the parameters.
We can change them to change the shape of the distribution, while always
ensuring that it still sums to one. We draw an example normal distribution
in Figure 1, right.
The differences between discrete and continuous probability distributions
are summarized in Table 1.

2.3 Conditional distributions

• A conditional distribution means that the distribution of one variable de-
pends on the value that another variable takes.

• We write p(X|Y ) to indicate that the value of X depends on the value of
Y .

Example: For discrete random variables, we may store a conditional
distribution as a table of size |X | × |Y|. A variable X that can take
three values (X = {1, 2, 3}) and variable Y that can take two values
(Y = {1, 2}). The conditional distribution may for example be:

p(X = 1|Y ) p(X = 2|Y ) p(X = 3|Y )
Y = 1 0.2 0.4 0.4
Y = 2 0.1 0.9 0.0

Note that for each value Y , p(X|Y ) should still sum to 1, i.e., it is a valid
probability distribution. In the table above, each row therefore sums to
1.
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Example: We can similarly store conditional distributions for continuous
random variables, this time mapping the input space to the parameters
of a continuous probability distribution. For example, for p(Y |X) we
can assume a Gaussian distribution N (µ(x), σ(s)), where the mean and
standard deviation depend on x ∈ R. Then we can for example specify:

µ(x) = 2x, σ(x) = x2

and therefore have

p(y|x) = N (2x, x2)

Note that for each value of X, p(Y |X) still integrates to 1, i.e., it is a
valid probability distribution.

2.4 Expectation

We also need the notion of an expectation.

2.4.1 Expectation of a random variable

The expectation of a random variable is essentially an average. For a discrete
variable, it is defined as:

EX∼p(X)[f(X)] =
∑
x∈X

[x · p(x)] (1)

For a continuous variable, the summation becomes integration.

Example:
Assume a given p(X) for a binary variable:

x p(X = x)
0 0.8
1 0.2

The expectation is

EX∼p(X)[f(X)] = 0.8 · 0 + 0.2 · 1 = 0.2 (2)
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2.4.2 Expectation of a function of a random variable

More often, and also in the context of reinforcement learning, we will need the
expectation of a function of the random variable, denoted by f(X). Often, this
function maps to a continuous output.

• Assume a function f : X → R, which, for every value x ∈ X maps to a
continuous value f(x) ∈ R.

• The expectation is then defined as follows:

EX∼p(X)[f(X)] =
∑
x∈X

[f(x) · p(x)] (3)

For a continuous variable the summation again becomes integration. The formula
may look complicated, but it essentially reweights each function outcome by the
probability that this output occurs, see the example below.

Example:
Assume a given density p(X) and function f(x):

x p(X = x) f(x)
1 0.2 22.0
2 0.3 13.0
3 0.5 7.4

The expectation of the function can be computed as

EX∼p(X)[f(X)] = 22.0 · 0.2 + 13.0 · 0.3 + 7.4 · 0.5
= 12.0

The same principle applies when p(x) is a continuous density, only with the
summation replaced by integration.

2.5 Information theory

Information theory studies the amount of information present in distributions,
and the way we can compare distributions.

2.5.1 Information

The information I of an event x observed from distribution p(X) is defined as:

I(x) = − log p(x).
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Figure 2: Entropy of a binary discrete variable. Horizontal axis shows the prob-
ability that the variable takes value 1, the vertical axis shows the associated
entropy of the distribution. High entropy implies high spread in the distribution,
while low entropy implies little spread.

In words, the more likeli an observation is (the higher p(x)), the less infor-
mation we get when we actually observe the event. In other words, information
of an event is the (potential) reduction of uncertainty. On the two extremes we
have:

• p(x) = 0 : I(x) = − log 0 =∞

• p(x) = 1 : I(x) = − log 1 = 0

2.5.2 Entropy

We define the entropy H of a discrete distribution p(X) as

H[p] = EX∼p(X)[I(X)]

= EX∼p(X)[− log p(X)]

= −
∑
x

p(x) log p(x)

(4)

If the base of the logarithm is 2, then we measure it in bits. When the based of
the logarithm is e, then we measure the entropy in nats. The continuous version
of the above equation is called the continuous entropy or differential entropy.

Informally, the entropy of a distribution is a measure the amount of ”uncer-
tainty” in a distribution, i.e., a measure of its ”spread”. We can nicely illustrate
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this with a binary variable (0/1), where we plot the probability of a 1 against
the entropy of the distribution (Figure 2). We see that on the two extremes, the
entropy of the distribution is 0 (no spread at all), while the entropy is maximal
for p(x = 1) = 0.5 (and therefore p(x = 0) = 0.5), which gives maximal spread
to the distribution.

Example: The entropy of the distribution in the previous example is:

H[p] = −
∑
x

p(x) log p(x)

= −0.2 · ln 0.2− 0.3 · ln 0.3− 0.5 · ln 0.5 = 1.03 nats (5)

2.5.3 Cross-entropy

The cross-entropy is defined between two distributions p(X) and q(X) defined
over the same support (sample space). The cross-entropy is given by:

H[p, q] = EX∼p(X)[− log q(X)]

= −
∑
x

p(x) log q(x)

(6)

When we do maximum likelihood estimation in supervised learning, then we
actually minimize the cross-entropy between the data distribution and the model
distribution (see Appendix IV).
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3 Derivative of an expectation

A key problem in gradient-based optimization, which appears all over machine
learning, is getting the gradient of an expectation. We will here discuss one
well-known method1: the REINFORCE estimator (in reinforcement learning),
which is in other fields also know as the score function estimator, likelihood ratio
method, and automated variational inference.

Imagine we are interested in the gradient of an expectation, where the pa-
rameters appear in the distribution of the expectation2:

∇θEx∼pθ(x)[f(x)] (7)

We cannot sample the above quantity, because we have to somehow move
the gradient inside the expectation (and then we can sample the expectation to
evaluate it). To achieve this, we will use a simple rule regarding the gradient of
the log of some function g(x):

∇x log g(x) =
∇xg(x)

g(x)
(8)

This results from simple application of the chain-rule.
We will now expand Eq. 7, where we midway apply the above log-derivative

trick.

∇θEx∼pθ(x)[f(x)] = ∇θ
∑
x

f(x) · pθ(x) definition of expectation

=
∑
x

f(x) · ∇θpθ(x) push gradient through sum

=
∑
x

f(x) · pθ(x) · ∇θpθ(x)

pθ(x)
multiply and divide by pθ(x)

=
∑
x

f(x) · pθ(x) · ∇θ log pθ(x) log-derivative rule (Eq. 8)

= Ex∼pθ(x)[f(x) · ∇θ log pθ(x)] rewrite into expectation

1Other methods to differentiate through an expectation is through the reparametrization
trick, as for example used in variational auto-encoders, but we will not further treat this topic
here.

2If the parameters only appear in the function f(x) and not in p(x), then we can simply
push the gradient through the expectation
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What the above derivation essential does is pushing the derivative inside of
the sum. This of course equally applies when we change the sum into an integral.
Therefore, for any pθ(x), we have:

∇θEx∼pθ(x)[f(x)] = Ex∼pθ(x)[f(x) · ∇θ log pθ(x)] (9)

This is known as the log-derivative trick, score function estimator, or REIN-
FORCE trick. Although the formula may look complicated, the interpretation is
actually really simple. We explain this idea in Figure 3. In the next section we
will apply this idea to reinforcement learning.

Figure 3: Graphical illustration of REINFORCE estimator. Left: Example dis-
tribution pθ(x) and function f(x). When we evaluate the expectation of Eq. 9,
we take m samples, indicated by the blue dots (in this case m = 8). The mag-
nitude of f(x) is shown with the red vertical arrows. Right: When we apply
the gradient update, each sample pushes up the density at that location, but the
magnitude of the push is multiplied by f(x). Therefore, the higher f(x), the
harder we push. Since a density needs to integrate to 1, we will increase the
density where we push hardest (in the example on the rightmost sample). The
distribution will therefore shift to the right on this update.
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Part II

Reinforcement learning problem
We will now formally introduce the Markov Decision Process problem, and discuss
how to represent the solution in the form of a policy.
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4 Markov Decision Process definition

A Markov Decision Process is a very generic way to define sequential decision-
making tasks. We will here focus on continuous MDPs, where the action space
(and often the state space) are continuous.

4.1 Definition

The formal definition of a MDP is {S,A, T (s′|s, a), R(s, a, s′), γ, p0(s0)}, which
represent the:

1. State space: S.

• Which observations are possible?

• Discrete set, e.g., {0, 1}DS , or

• Continuous set, e.g., RDS or [0, 1]DS .

2. Action space: A.

• Which actions are possible?

• Discrete set, e.g., {up,down, left, right}.
• Continuous set, e.g., [0, 1]DA .

3. Transition dynamics: T (s′|s, a).

• How does the environment react to an action?

• A conditional probability distribution, represented as a function T :
S ×A → p(S).

• In RL usually only available as a simulator.

• Terminal states: some states are terminal. When we reach them,
the task ends (i.e., we cannot select a new action, or transition out of
them).

4. Reward function: R(s, a, s′).

• How rewarding/preferable is each transition?

• Function T : S ×A× S → R.

• Frequently simpler functions, like like R(s′) or R(s, a).
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• Cost, as frequently used in shortest path-problems, is equivalent to
negative reward. We can formalize all shortest path problems as an
MDP, by negating the cost function, or switching from reward maxi-
mization to cost minimization.

5. Discount factor: γ.

• How much do we down-weight long-term rewards?

• A constant, γ ∈ [0, 1].

6. Initial state distribution: p0(s).

• Where do we start?

• A distribution over S.

4.2 Policy

The central question of MDP optimization concerns how we act in the environ-
ment. For this we use a policy π, which is a conditional probability distribu-
tion that for each possible state specifies the probability of each possible action.
Thereby, it is a mapping from the state space to a probability distribution over
the action space:

π : S → p(A)

where p(A can be a discrete or continuous probability distribution. For a
particular probability (density) from this distribution we write

π(a|s)

Note that we generally assume a stationary/time-independent policy, i.e.,
which is the same function for all timepoints (this is valid as long as we use
the infinite-horizon cumulative return, which we will encounter later).

Example: For a discrete state space and discrete action space, we may
store an explicit policy as a table, e.g.:

s π(a=up|s) π(a=down|s) π(a=left|s) π(a=right|s)
1 0.2 0.8 0.0 0.0
2 0.0 0.0 0.0 1.0
3 0.7 0.0 0.3 0.0
etc. .. .. .. ..
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Deterministic policy A special case of a policy is a deterministic policy, de-
noted by

π(s)

where

π : S → A
A deterministic policy selects only a single action in every state. Of course

the deterministic action may differ between states, as in the below example:

Example: An example of a deterministic discrete policy is

s π(a=up|s) π(a=down|s) π(a=left|s) π(a=right|s)
1 0.0 1.0 0.0 0.0
2 0.0 0.0 0.0 1.0
3 1.0 0.0 0.0 0.0
etc. .. .. .. ..

We would write π(s = 1) = down, π(s = 2) = right, etc.

Parametrized policy In practice, we will have to store our policy in memory in
some form. This means that our policy will depend on parameters θ. To indicate
the dependence on policy parameters θ, we will write πθ(a|s). We extensively
discuss policy specification in Chapter 5.

4.3 Traces

We will start interacting with the MDP. At each timestep t we observe st, take
an action at according to policy π(a|s), and then observe the next state st+1 ∼
T (·|s, a) and reward rt = R(st, at, st+1). Repeating this process leads to a trace
in the environment, which we denote by hnt :

hnt = {st, at, rt, st+1, .., at+n, rt+n, st+n+1}
Here, n denotes the length of the trace. In practice, we often assume n =∞,

which means that we run the trace until the domain terminates. In those cases,
we will simply write ht = h∞t .

Example: A short trace with three actions could look like:

h20 = {s0=1, a0=up, r0=-1, s1=2, a1=up, r1=-1, s2=3, a2=left, r2=20, s3=5}
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Distribution over traces Since both the policy and the transition dynamics
can be stochastic, we will not always get the same trace from the start state.
Instead, we will get a distribution over traces. The distribution of traces from
the start state (distribution) is denoted by pθ(h0), which depends on the policy
parameters θ. The probability of each possible trace from the start is actually
given by the product of the probability of each specific transition in the trace:

pθ(h0) = p0(s0) · π(a0|s0) · T (s1|s0, a0) · π(a1|s1)...

= p0(s0) ·
∞∏
t=0

πθ(at|st) · T (st+1|st, at) (10)

Example: An example trace distribution is visualized in Figure 4.

Figure 4: Example distribution over a fictional 2D state space, S = [0, 100]2,
with p(h) shown on the vertical axis. Three example traces sampled from this
distribution are shown. The most distant trace had the highest probability under
p(h).

4.4 Cumulative reward

We have not yet defined what we actually want to achieve in the sequential
decision-making task. The MDP definition included a reward function. We
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clearly want to achieve as much reward as possible in the task. The sum of
all the reward that we achieve is known as the cumulative reward, also called the
return.

We will denote the return, or cumulative reward, of a trace ht as:

R(ht) = rt + γ · rt+1 + γ2 · rt+2 + ...

=

∞∑
i=0

γirt+i (11)

where γ ∈ [0, 1] denotes a discount factor. It determines how much we down-
weight distant rewards. The two extreme cases are:

• γ = 0: A myopic agent, which only considers the immediate reward, i.e.,
R(ht) = rt.

• γ = 1: A far-sighted agent, which treats all future rewards as equal, i.e.,
R(ht) = rt + rt+1 + rt+2 + .....

Importantly, we cannot use an infinite-horizon return (Eq. 11) and γ = 1.0,
since then the cumulative reward may become infinite. In practice, we typically
use a discount factor close to 1.0, like γ = 0.99 or γ = 0.999.

Example: We use the previous trace example, and assume γ = 0.9. The
cumulative reward is equal to:

R(h20) = −1 + 0.9 · −1 + 0.92 · 20 = 16.2− 1.9 = 14.3

4.5 Value (expected cumulative reward)

The return of a trace is not the real measure of optimality in which we are
interested. The environment can be stochastic, and our policy as well, so for a
given policy we do not always observe the same trace. Therefore, we are actually
interested in the average, or expected, cumulative reward that a certain policy
achieves. The average cumulative reward is better known as the value. We can
define state values, and state-action values.

State value We define the state value V π(s), which is the average return we
expect to achieve when an agent starts in state s and follows policy π, as:

V π(s) = Eht∼p(ht)
[ ∞∑
i=0

γi · rt+i|st = s
]

(12)

25



Example: Imagine we have a policy π, which from state s can result in
two traces. The first trace has a cumulative reward of 20, and occurs in
60% of the times. The other trace has a cumulative reward of 10, and
occurs 40% of the times. What is the value of state s?

V π(s) = 0.6 · 20 + 0.4 · 10 = 16.

Note that 16 is the average return (cumulative reward) that we expect to
get from state s under this policy.

Every policy π has only one unique associated value function V π(s). We
sometimes omit π to simplify notation, simply writing V (s), knowing a state
value is always conditioned on a certain policy.

Since the state value is defined for every possible state s ∈ S, it is really a
value function, which maps every state to a real number (the average return:

V : S → R

.

Example: In a discrete state space, the value function can be represented
as a table of size |S|.

s V π(s)
1 2.0
2 4.0
3 1.0
etc. etc.

Finally, the state value of a terminal state is by definition zero, i.e.,

s = terminal ⇒ V (s) := 0.

State-action value Instead of state values V π(s), we also define state-action
values Qπ(s, a). The only difference is that we now condition on a state and
action, i.e., we estimate the average return we expect to achieve when taking
action a in state s, and then following policy π afterwards:

Qπ(s, a) = Eht∼p(ht)
[ ∞∑
i=0

γi · rt+i|st = s, at = a
]

(13)
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Every policy π has only one unique associated state-action value function
Qπ(s, a). Sometimes we omit π to simplify notation. Again, the state-action
value is a function

Q : S ×A → R,
which maps every state-action pair to a real number.

Example: For a discrete state and action space, Q(s, a) can be repre-
sented as a table of size |S| × |A|. Each table entry stores a Q(s, a)
estimate for the specific s, a combination:

a=up a=down a=left a=right
s=1 4.0 3.0 7.0 1.0
s=2 2.0 -4.0 0.3 1.0
s=3 3.5 0.8 3.6 6.2
etc. .. .. .. ..

The state-action value of a terminal state is by definition zero, i.e.,

s = terminal ⇒ Q(s, a) := 0, ∀a

A potential benefit of state-action values (Q) versus state values (V ) is that
state-action values directly tell what every action is worth (which may be useful
for action selection).

4.6 Bellman equations

The interesting thing about the value function is that we can write it in recursive
form, because the value is also defined at the next states.

The Bellman equations for state-values and state-action values are given by:

V (s) = Ea∼π(·|s)Es′∼T (·|a,s)
[
r(s, a, s′) + γ · V (s′)

]

Q(s, a) = Es′∼T (·|a,s)
[
r(s, a, s′) + γ · Ea′∼π(·|s′)[Q(s′, a′)]

]
Depending on whether the state and action space are discrete or continuous

respectively, we may write out these equations differently.
For a discrete state space and discrete action space, we can write out the

expectations as summations:

V (s) =
∑
a∈A

π(a|s)
[ ∑
s′∈S

T (s′|s, a)
[
r(s, a, s′) + γ · V (s′)

]]
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Q(s, a) =
∑
s′∈S

T (s′|s, a)
[
r(s, a, s′) + γ ·

∑
a∈A

π(a|s)[Q(s′, a′)]
]

For continuous state and action spaces, the summations over policy and tran-
sition dynamics are replaced by integration:

V (s) =

∫
a

π(a|s)
[ ∫

s′
T (s′|s, a)

[
r(s, a, s′) + γ · V (s′)

]
ds′
]

da

The same principle applies to the Bellman equation for state-action values:

Q(s, a) =

∫
s′
T (s′|s, a)

[
r(s, a, s′) + γ ·

∫
a′

[π(a′|s′) ·Q(s′, a′)
]

da′
]

ds′

We may also have a mixes, e.g., a continuous state space (like visual input)
but a discrete action space (like pressing buttons in a game). This would give:

Q(s, a) =

∫
s′
T (s′|s, a)

[
r(s, a, s′) + γ ·

∑
a′

[π(a′|s′) ·Q(s′, a′)
]]

ds′

4.7 Reinforcement learning objective

The objective of reinforcement learning is to achieve the highest possible average
return from the start state:

J(π) = V π(s0) = Eh0∼p(h0|π)

[
R(h0)

]
. (14)

for p(h0) given in Eq. 10. It turns out that there is only one optimal value
function, which achieves higher or equal value than all other value functions. We
search for a policy that achieves this optimal value function, which we call the
optimal policy π?:

π?(a|s) = arg max
π

V π(s0) (15)
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5 Representing the solution

As we have seen in the previous chapter, the eventual goal of reinforcement
learning is to find the optimal policy π(a|s). We want to store our gradual
approximation of this function in memory, which requires a form of supervised
learning. We will here focus on parametric supervised learning, which uses a
parametric function:

πθ : S ×Θ→ p(A).

In words, this mapping takes in the state and outputs a probability distribu-
tion over the action space. Our aim is to find the best set of parameters θ, i.e.,
the set of parameters θ that gets πθ closest to the optimal policy.

In practice, the way we implement πθ depends on 1) the type of the state
space (the input), and 2) the type of action space (the output). We will discuss
each separately.

5.1 Dealing with the state space

The type of input space mostly determines what type of supervised learning
method we use. We will mostly focus on methods that store a global solution, i.e.,
a solution for the entire input space. In a parametric approximation, we can either
represent the solution as a table, or with function approximation. The choice
between tabular or function approximation is actually a topic from supervised
learning (See. Part IV). We will summarize the general rules: 1) Tables are exact
and easy to implement (especially on discrete input), but they can not generalize,
and do not scale to high-dimensions, 2) Function approximation has the benefit
of generalization and scale to high-dimensional problems, but are more involved
to train and make approximation errors.

We can also use tables in continuous domains, by discretizing the space and
treating them as separate bins. Therefore, our choice essentially depends on two
characteristics of the state space:

1. The type of space: discrete or continuous.

2. The dimensionality of the space: small or large.

This leads to the following considerations, summarized in Table 3.

• Small, discrete state space: We typically use a table. A good example is
tabular Q-learning on a gridworld.
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Table 2: Global solution representation approaches depending on state space type
(columns) and dimensionality (rows). FA = function approximation.

Discrete Continuous

Low dimensional Table(/FA) Discretization/FA

High dimensional FA FA

• High-dimensional state space: For a global solution, we have to use function
approximation, due to the curse of dimensionality. A good example is
AlphaZero, which used a high-dimensional discrete state space like Chess
or Go.

• Small, continuous state space: In a small, continuous state space, we have
two options: 1) we can discretize the state space, and use a table, or 2) we
can use function approximation. Often we still use function approximation.
A good example is CartPole, where we swing up a pole on a cart.

• High-dimensional state space: Function approximation. A good example is
robot that learns to pick objects based on visual information.

Local solution Local approaches do not store a policy for the entire state
space, but only store a solution for a small subset of the space. This is the
common approach in all planning methods. For example, Monte Carlo Tree
Search only stores information for the current state and the states that directly
descend from it, not for the entire state-space. It searches for a while for a
local solution for the current node, and afterwards discards the solution. Local
approaches nearly always use tabular solutions.

Note that we can also combine the above representations in one algorithm.
For example, AlphaZero uses both an MCTS search (a local tabular solution)
and a policy/value network (global function approximation).

5.2 Dealing with the action space

The next question is, how do we deal with the type of action space p(/mathcalA)
in which we want to predict. There are two important characteristics 1) implicit
versus explicit policies, and 2) discrete versus continuous action spaces. We will
first discuss implicit policies, see how they are mostly applicable for discrete
action spaces, and afterwards discuss explicit policies.
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5.2.1 Implicit policy (value-based)

Implicit policies do not directly store pθ(a|s), but rather store a value function
Qθ(s, a) or Vθ(s). Then, they derive the policy as a direct, hand-coded function
from the value function.

πθ(a|s) = f(Qθ(s, a))

where f(·) is some prespecified function. As we will see below, this mostly
works for discrete action spaces.

Implicit discrete policy It turns out that this approach is really useful in
discrete action spaces. Some examples are:

• The greedy policy, which always selects the action which current has the
highest value estimate:

πθ(s) = arg max
a∈A

Qθ(s, a) (16)

The ε-greedy policy is a variant where with probability ε, we randomly
select one of the other actions.

• The Boltzmann policy, which gradually gives higher probability to actions
with a higher current value estimate:

πθ(a|s) =
expQθ(s, a)/τ∑
b∈A expQθ(s, b)/τ

(17)

where τ ∈ R+ denotes a temperature parameter, which we can scale to
make the policy more or less greedy.

• The UCT policy, well-known from Monte Carlo Tree Search, is also an
example of an implicit policy. There are many variants of the UCT formula,
but a common form is to use:

πθ(s) = arg max
a

[
Q̄θ(s, a) + c ·

√
lnn(s)

n(s, a)

]
(18)

where Q̄θ(s, a) is the mean value estimate for the particular state-action
pair, n(s) is the number of times we visited node s, and n(s, a) is the
number of times we visited action a in node s.

The recurrent theme in implicit policies is that we select actions in the envi-
ronment based on a hand-designed function from value estimates.
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Table 3: Feasible use of implicit and explicit policies (columns) in discrete and
continuous action spaces (rows). Implicit policies are really useful in discrete
action spaces, but not easy to apply in continuous action spaces.

Implicit policy
π = f(Qθ(s, a))

Explicit policy
πθ(a|s)

Discrete action space X X

Continuous action space - X

Implicit continuous policies While implicit policies are really useful in dis-
crete action spaces, it turns out that they are not very useful in continuous action
spaces. Eventually, we want to use our policy to select an action, for example the
greedy action. In discrete action spaces, we can quickly evaluate this by simply
taking the argmax over the available actions:

π(s) = arg max
a∈[1,2,..,n]

Q(s, a)

which is fast to evaluate. However, in a continuous space, we would for
example have to evaluate

arg max
a∈R

Q(s, a)

which is a complete optimization problem itself! It would take way too long
to find the optimum, while our robot would be waiting. Therefore, for problem
with a continuous action space, we actually prefer explicit policies, from which
we can always sample.

5.2.2 Explicit policy (policy search)

Explicit policy approaches directly represent a probability distribution over p(A),
by predicting the parameters of a distribution over A. Thereby, we can directly
sample an action from this distribution when we want to execute the policy.

Explicit discrete policy An explicit discrete policy simply stores the prob-
abilities for every discrete action given a particular state. Two examples were
already given in Sec. 4.2. When we use function approximation, we can for
example use a neural network that predicts discrete probabilities.
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Example: In 19x19 Go we have in principle 19·19 = 361 free positions on
the board, i.e., a discrete action space of size 361 (of course, some locations
may already be occupied by stones, but we will still predict them, and
simply mask them (ignore them) when they are actually proposed). We
can the implement a neural network that outputs a vector y = fθ(s) of
length 361, and use

πθ(a|s) = softmax(fθ(s))

for

softmax(y) =
eyi∑
k e

yk
.

The softmax normalizes the vector to probabilities (see Chapter 13 for a
recap of supervised learning). Thereby we simply predict the parameters
of a discrete probability distribution.

Explicit continuous policy As discussed before, explicit policies are almost
unavoidable in problems with a continuous action space. Again, we can simply
predict the parameters of an arbitrary continuous probability distribution.

Example: For example, for a one dimensional action space, we may use
a neural network to predict a vector of length two, where the first element
represents the mean µθ(s) = fθ(s), and use the second element to predict
the standard deviation, e.g., σθ(s) = exp fθ(s) or σθ(s) = softplus(fθ(s)),
where we exponentiate because the standard deviation needs to be posi-
tive. We can then specify an explicit continuous policy as:

πθ(a|s) = N (a|µθ(s), σθ(s)) =
1

σθ(s)
√

2π
exp

(
− (a− µθ(s))2

2σ2
θ(s)

)
.

This also generalizes to higher-dimensional continuous action spaces, for
example a 2D independent Gaussian for an action space A = R2:

πθ(a|s) = N (µθ(s),Σθ(s))

where µ = {µθ,1(s), µθ,2(s)} and Σ =

[
σθ,1(s) 0

0 σθ,2(s)

]
Note that the two Gaussians are independent, since the off-diagonal entries
in the covariance matrix Σ are 0.
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Figure 5: Representing the solution. 1) In policy search (green, solid lines), we
only represent a policy πθ(a|s), parametrized by θ. 2) In value-based methods
(blue, half-dashed), we only represent a value function Qθ(s, a). The policy is
an implicit function of the value, i.e. π(a|s) = f(Qθ(s, a)). 3) In actor-critic
methods (red, small-dashed), we use both a policy and value representation,
where the value aids in the update of the policy.

For explicit continuous policies, we can represent a deterministic policy in a
special form, since we can directly predict a value in the continuous space. You
could also think of this as predicting only the mean of a Gaussian distribution.

Example: We implement a deterministic, explicit, continuous policy as

πθ(s) = fθ(s),

as long as fθ has the restriction to respect the range of the action space
(i.e., if our environment only allows continuous actions between 0 and 1,
then our prediction should also output a number between 0 and 1).

5.2.3 Actor-critic

So far, we have looked at value-based methods, which optimize a learned value
function (which implicitly defines the policy), and policy-based methods, which
directly optimize a learned policy function (although we have not actually dis-
cussed how to optimize them). There is a third category of approaches that
actually uses both a policy and value function, better known as actor-critic meth-
ods (where the ’actor’ is the policy and the ’critic’ is the value function). We will
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later explain in greater detail how a value function may help to update a policy
function.

Summary of policy search, value-based RL and actor-critic We shortly
summarize these two ways of representing a policy in Figure 5. It shows how
we may either store an explicit policy (green, solid lines), an implicit policy in
the form of a value function (blue, half-dashed lines), or a combination of both
(known as actor-critic, red, small-dashed lines).

Table 4 summarizes some example equations of how different methods repre-
sent their solution. Table ?? provides some illustrative examples for each combi-
nation.
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6 Cumulative reward estimation

All RL methods will need an estimate of the cumulative reward (return) from a
certain state(-action). Given a trace

ht = {st, at, rt, st+1, at+1, rt+1, ..},
all RL approaches estimate the cumulative reward with a variant of the below

equation:

Q̂n-step(st, at) =

n−1∑
k=0

rt+k + Vθ(st+n), (19)

where different values of n imply:

• n = 1 is a one-step target, where we sample one transition an plug in the
learned value function.

• 1 < n < ∞ is an n-step target, where we take an intermediate number of
steps an then bootstrap.

• n→∞ this is a Monte Carlo target, where we never bootstrap.

and Vθ(st+n) can be

• An off-policy target from Q: when Vθ(s) = maxaQθ(s, a) and n = 1.

• An on-policy target: when Vθ(s) = Qθ(s, a) for a ∼ πθ(a|s) and/or n >
1.

These ideas are summarized in Tables 5 and 6. Both the depth n and the use
of on-policy or off-policy is subject to a trade-off:

• The bootstrap depth n trades-off between bias and variance. For n → ∞,
we have an unbiased, but high-variance estimate (every trace can have a
different return, and we only sample a few of the many possible traces). For
n→ 1, we reduce the variance, since we aggregate different potential traces
in the same bootstrapped value estimate. However, we decrease variance
but increase bias, since the value estimate can be incorrect.

• On-policy targets follow the behavioural policy and are typically more sta-
ble, but when we retain exploration they will never learn the optimal policy
or value function. Off-policy targets can learn the optimal policy/value, but
they can be unstable due to the max operation, especially in combination
with function approximation.
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Table 5: On-policy and off-policy following Eq. 19. Off-policy estimates require
n = 1 and a different policy than the behavioural for the bootstrap estimate.
When we max, we call the algorithm Q-learning. An on-policy algorithm in-
stead bootstraps the behavioural policy. When we do this after 1-step, we call
it SARSA. Any target deeper than depth 1 is by definition on-policy, since the
initial steps in the trace are by definition on-policy.

Vθ(s) = arg maxaQθ(s, a) Vθ(s) = Qθ(s, a)
n = 1 off-policy on-policy
n > 1 on-policy on-policy
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7 Value-based reinforcement learning

We give a very brief summary of value-based reinforcement learning, where we
want to update a value function (implicit policy) from data. As mentioned before,
this is mostly applicable to discrete action space problems. In value-based RL, we
often prefer to learn a state-action value function Qθ(s, a), since we can directly
use it to act. In actor-critic approaches (see Sec. 10), we often learn a state
value function Vθ(s) instead, for bootstrapping or baseline subtraction. We will
here only discuss the value-based RL approach that uses a state-action value
(Qθ(s, a)).

7.1 Value function update

Given a cumulative reward estimate, we can update the learned value function,
for example based on a squared loss:

L(θ|st, at) = Eh0∼pθ(h0)

[(
Qθ(st, at)− Q̂n-step(st, at)

)2]
with Q̂n-step(st, at) as described in Eq. 19.

7.2 Exploration

We need to ensure exploration while collecting data in the environment. For this,
we specify a behavioural policy:

πθ(a|s) = g(Qθ(s, a))

for some function g(). Simple approaches to ensure exploration inject noise
into the behavioural policy, i.e., not always selecting the action which currently
has the highest value estimate. Some examples of exploratory policies for value-
based RL in discrete action spaces are:

• The ε-greedy policy

πθ(a|s) =

{
1.0− ε, if a = arg maxb∈AQθ(s, b)

ε/(|A| − 1), otherwise
(20)

In words, we select with small probability ε a random action, which ensures
exploration.
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• The Boltzmann policy (already encountered)

πθ(a|s) =
expQθ(s, a)/τ∑
b∈A expQθ(s, b)/τ

(21)

where τ ∈ R+ denotes a temperature parameter, which we can scale to
make the policy more or less greedy. This approach gradually gives higher
probability to actions with a higher current value estimate, but still ensures
exploration of other actions than the greedy one.

An example algorithm for Q-learning is shown in Alg. 1.

Algorithm 1: Q-learning with function approximation

Input: A parametrized state-action value function Qθ(s, a), number of
episodes n, learning rate η ∈ R+.

Initialization: Randomly initialize parameters θ.
for i = 1..n do

Sample initial state s0 ∼ p0(s0)
grad = 0
for t = 0..K do

Sample action at ∼ f(Qθ(st, ·)) /* Sample a trace */

Observe from environment (rt,st+1)
Q̂(at, st) = rt + maxat+1 Qθ(st+1, at+1) /* Off-policy estim */

grad += d
dθ (Qθ(st, at)− Q̂n-step(st, at)

)2
/* Squared loss */

end
θ ← θ − η· grad /* Update params */

end
πgreedy(s, a) = arg maxaQ(s, a) ∀s, a /* Greedy policy */

Return Qθ(s, a) or πθ(s, a).
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Part III

Policy-based RL
We will now go into detail on methods that directly optimize an explicit policy.
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8 Policy search

Approaches that directly optimize an explicit policy are called policy search.
We can interpret the reinforcement learning objective as a direct optimization
problem in policy space, since we want to find

θ? = arg max
θ

J(θ). (22)

In our case, J(θ) is specified in Eq. 14. There are two main approaches to
such optimization problems:

• Gradient-based optimization (= policy gradients): These methods use
the derivative of the objective to find the optimum. In the case of a max-
imization, we may then apply gradient ascent, which in each iteration i of
the algorithm makes the following update:

θi+1 = θi + η · ∇θJ(θ)

for learning rate η ∈ R+. A full algorithm is given in Alg. 2.

Algorithm 2: Gradient ascent optimization

Input: A differentiable objective J(θ), learning rate η ∈ R+, threshold
ε ∈ R+.

Initialization: Randomly initialize θ in Rd.
repeat

θ ← θ + η · ∇θJ(θ)
until θ converges;
Return Optimal parameters θ

• Gradient-free optimization: Examples of gradient-free optimization strate-
gies include evolutionary strategies (ES), like the cross-entropy method
(CEM). These can actually be very efficient and are relatively easy to im-
plement, so they can serve as a useful baseline. We will shortly discuss
these after the gradient-based policy search methods, in Chapter 11.

We will focus on gradient-based approaches to policy search, which are known
as policy gradients. However, to derive the policy gradient, we first need to
understand the derivative of an expectation.
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Figure 6: Graphical illustration of value-based RL, policy-based RL and actor-
critic (value + policy). We also depict policy gradient methods, which use
gradient-based optimization for the policy update, which can be combined with
a value function or not.
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9 Gradient-based policy search: policy gradients

We will now derive the policy gradient equation. The question is: can we derive
the gradient of the reinforcement learning objective (Eq. 14). In this case, we
are looking for the following derivative:

∇θJ(θ) = ∇θEh0∼pθ(h0)

[
R(h0)

]
(23)

The problem is that this is not a quantity that we can sample. We would like
to get the gradient inside the expectation, so that we can sample data, and then
compute the gradient.

9.1 Monte Carlo Policy Gradient (REINFORCE)

We will now show the main derivation of the Monte Carlo Policy Gradient, better
known as the REINFORCE estimator. Carefully read Sec. 3, which introduces
the the log-derivative trick to differentiate through an expectation. With basic
calculus it shows the following identity (Eq. 9):

∇θEx∼pθ(x)[f(x)] = Ex∼pθ(x)[f(x) · ∇θ log pθ(x)] (24)

We can directly apply this idea to ∇θJ(θ):

∇θJ(θ) = ∇θEh0∼pθ(h0)

[
R(h0)

]
= Eh0∼pθ(h0)

[
R(h0) · ∇θ log pθ(h0)

]
Log-derivative trick (Eq. 9)

(25)

Now, we still need to simplify the log-derivative of a trace distribution (defined
in Eq. 10):
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∇θ log pθ(h0) = ∇θ log
[
p0(s0)

n∏
t=0

πθ(at|st) · T (st+1|st, at)
]

Definition of pθ(h0)

= ∇θ
[

log p0(s0) +

n∑
t=0

log πθ(at|st) +

n∑
t=0

log T (st+1|st, at)
]

Log of product

=

n∑
t=0

∇θ log πθ(at|st) Dependence on θ

(26)

Putting the above expression in, we get:

∇θJ(θ) = ∇θEh0∼pθ(h0)

[
R(h0)

]
∇θJ(θ) = Eh0∼pθ(h0)

[
R(h0) · ∇θ log pθ(h0)

]
Log-derivative trick (Eq. 9)

∇θJ(θ) = Eh0∼pθ(h0)

[
R(h0) ·

n∑
t=0

∇θ log πθ(at|st)
]

Log derivative of trace (Eq. 26)

(27)

The above formulation essentially says that we should sample traces h, and
for step in the trace multiply the gradient of the policy with the return of the
whole trace, R(h0). In practice, the gradient of an action at a particular timestep
only depends on what happens after that decision. Therefore, a more common
formulation of the policy gradient only considers the remaining return from the
specific timepoint, i.e.:

∇θEh0∼pθ(h0)

[
R(h0)

]
= Eh0∼pθ(h0)

[ n∑
t=0

R(ht)∇θ log πθ(at|st)
]

(28)

This equation is known as the policy gradient theorem. In particular, we call
the above version the Monte Carlo policy gradient, or REINFORCE estimator.

It is called a Monte Carlo estimator because we sample entire traces in the
environment. In practice, we would estimate the above quantity by sampling M
traces in the environment, i.e. {hi0}Mi=1 and computing:

∇θJ(θ) ≈ 1

M

M∑
i=1

[ n∑
t=0

R(hit)∇θ log πθ(at|st)
]

(29)

Note that, when we use automatic differentiation software (like Tensorflow or
PyTorch), we would implement the MC policy gradient by minimizing the loss
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L(θ) = − 1

M

M∑
i=1

[ n∑
t=0

R(hit) log πθ(at|st)
]

(30)

where we put a minus in front since it is now a loss (we minimize something),
and automatically differentiating the above expression gives the correct gradient
estimate.

The implementation of the Monte Carlo policy gradient is shown in Algorithm
3.

Algorithm 3: Monte Carlo policy gradient (REINFORCE)

Input: A differentiable policy πθ(a|s), parametrized by θ ∈ Rd.
A learning rate η.
Initialization: Randomly initialize θ in Rd.
while not converged do

grad← 0
for m ∈ 1, ..,M do

Sample trace h0 = {s0, a0, r0, s1, .., sn+1} following πθ(a|s)
R← 0
for t ∈ n, .., 1, 0 do

R← rt + γ ·R /* Backwards through trace */

grad += R · ∇θ log πθ(at|st) /* Add to total gradient */

end

end
θ ← θ + η · grad

end
Return πθ(a|s)

Practical interpretation of policy gradient Sometimes a complicated equa-
tion and derivation can have a very simple interpretation. We already saw the
interpretation of the reinforce estimator in Figure 3. Essentially, the reinforce es-
timator says that we should push up the probability of each action, but multiply
the strength of the push by the return for that action.
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Example: We have a policy network πθ(a|s) = softmax(fθ(s)) that maps
into a discrete action space. At a particular state s, we have three available
actions (a1,, a2 and a3), with current probabilities of 0.2, 0.5 and 0.3,
respectively. We manage to sample a trace from each available action,
which gives returns of 65, 70 and 75, respectively. The returns indicate
that we should multiply the gradient of θa3 by the largest value, i.e., this
action should increase the most. For example, after an update with a
large learning rate we could get probabilities of 0.2, 0.35 and 0.45.

9.2 Exploration

Just as with value-based reinforcement learning, we still need to ensure explo-
ration pressure, i.e., give the incentive to sometimes try an action which currently
seems suboptimal.

Deterministic policy & noise When we learn a deterministic policy πθ(s),
then we can manually add exploration noise. In a continuous action space we
could use Gaussian noise, while in a discrete action space we can use Dirichilet
noise. For example, in a 1D continuous action space we could use:

πθ,behaviour(a|s) = πθ(s) +N (0, σ),

where σ is an exploration hyperparameter.

Stochastic policy & entropy regularization When we learn a stochastic
policy π(a|s), then exploration is already partially ensured due to the stochastic
nature of our policy. For example, when we predict a Gaussian distribution, then
simply sampling from this distribution will already induce variation in the chosen
actions.

πθ,behaviour(a|s) = πθ(a|s)

However, one potential problem is collapse of the policy distribution. The
distribution then becomes too narrow, and we lose exploration pressure.

Although we could simply add additional noise (as mentioned above), another
common approach is to use entropy regularization (See. Chapter 2 for details on
entropy). We then add an additional penalty to the loss function, that enforces
the entropy of the distribution to stay larger, i.e., that enforces the distribution
to stay wide.

For example, we could extend the policy gradient equation (Eq. 36) to
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∇θJ(θ) = Eh0∼pθ(h0)

[ n∑
t=0

Rt∇θ log πθ(at|st) + η∇θH[πθ(a|s)]
]

(31)

where η ∈ R+ is a constant that scales the amount of entropy regularization.
This ensures that we will move πθ(a|s) towards the optimal policy, while also
ensuring that the policy stays as wide as possible (essentially trading both off
against eachother).
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10 Actor-critic

We will discuss two types of actor-critic approaches. First, we will discuss ap-
proaches that stabilize the policy gradient theorem update through the use of
a value function. Next, we will also shortly discuss an alternative way to get a
policy gradient, known as deterministic policy gradient.

10.1 Actor-critic policy gradient

The MC policy gradient is unbiased, as we previously established from our deriva-
tion. However, it has high variance (the size and direction of the update can
strongly vary over different samples), which can originate from two sources: 1)
high variance in the cumulative reward estimate, and 2) high variance in the
gradient estimate. The solution for each problem are a) bootstrapping, and b)
baseline subtraction. Both of these methods use a learned value function, which
we denote by Vφ(s).

10.1.1 Bootstrapping

The policy gradient is exact when we sample all possible traces. In practice,
there are exponentially many traces possible for a given stochastic policy, and
we cannot afford to all sample them for one update. Therefore, in practice we
usually keep M small, and sometimes even use M = 1, i.e., update from a single
trace. In those cases, the update that we compute may strongly differ between
traces, and in many of the traces we do not even hit a high reward region. In
other words, the update has high variance. A practical solution to this problem
is bootstrapping, which trades-off bias for variance. We already explained this
topic in Sec. 6.

In short, we can use bootstrapping to compute an n step target:

Q̂n(st, at) =

n−1∑
k=0

rt+k + Vφ(st+n) (32)

we can then update the value function, for example on a squared loss

L(φ|st, at) =
(
Q̂n(st, at)− Vφ(st)

)2
(33)

and update the policy with the standard policy gradient

∇θL(θ|st, at) = Q̂n(st, at) · ∇θ log πθ(at|st)] (34)

An example algorithm is shown in Alg. 4.
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Algorithm 4: Actor-critic policy gradient with bootstrapping. In prac-
tice, one would often average the gradient over multiple episodes to in-
crease stability.

Input: A policy πθ(a|s), a value function Vφ(s)
A estimation depth n, learning rate η.
Initialization: Randomly initialize θ and φ.
while not converged do

Sample trace h0 = {s0, a0, r0, s1, .., sT+1} following πθ(a|s)
for t = 0..T do

Q̂n(st, at) =
∑n−1
k=0 rt+k + Vθ(st+n) /* n-step target */

end

φ← φ− η ·
∑
t∇φ(Q̂n(st, at)− Vφ(st)

2 /* Descent value loss */

θ ← θ + η ·
∑
t[Q̂n(st, at) · ∇θ log πθ(at|st)] /* Ascent pol grad */

end
Return πθ(a|s)

10.1.2 Baseline subtraction

The policy gradient can also be numerically unstable. Imagine, in a given state
with three available actions, we sample actions returns of 65, 70, and 75, respec-
tively. We then implement the policy gradient equation, which will try to push
the probability of each action up, since the return for each action is positive. The
above method may lead to a problem, since we are pushing all actions up (just
harder on one of them). It might be better when we push up on actions that are
better than average, and push down on average that are below average. We can
do so through baseline substraction.

The most common choice for the baseline is the value function. When we
subtract the value from a state-action value estimate, we get the advantage func-
tion:

A(st, at) = Q(st, at)− V (st).

Compared to the cumulative return, the advantage function subtracts the
value of the state s. Thereby, it estimates how much better a particular action
is compared to what we expect to get on average from a particular state. In
practice, we can use any of the previous methods to estimate the cumulative
reward Q̂(st, at), compute

Ân(st, at) = Q̂n(st, at)− Vφ(st).

and update the policy with
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Algorithm 5: Actor-critic policy gradient with bootstrapping and base-
line subtraction. In practice, one would often average the gradient over
multiple episodes to increase stability.

Input: A policy πθ(a|s), a value function Vφ(s)
A estimation depth n, learning rate η.
Initialization: Randomly initialize θ and φ.
while not converged do

Sample trace h0 = {s0, a0, r0, s1, .., sT+1} following πθ(a|s)
for t = 0..T do

Q̂n(st, at) =
∑n−1
k=0 rt+k + Vθ(st+n) /* n-step target */

Ân(st, at) = Q̂n(st, at)− Vφ(st) /* Advantage */

end

φ← φ− η ·
∑
t∇φ(Q̂n(st, at)− Vφ(st)

2 /* Descent value loss */

θ ← θ + η ·
∑
t[Ân(st, at) · ∇θ log πθ(at|st)] /* Ascent pol grad */

end
Return πθ(a|s)

∇θL(θ|st, at) = Ân(st, at) · ∇θ log πθ(at|st)] (35)

A full algorithm is shown in Alg. 5.

10.1.3 Generic policy gradient formulation

With the two above ideas we can actually formulate an entire spectrum of policy
gradient methods, depending on the type of cumulative reward estimate they use.
In general, the policy gradient estimator takes the following form, where we now
introduced a new target Φt:

∇θJ(θ) = Eh0∼pθ(h0)

[ n∑
t=0

Ψt∇θ log πθ(at|st)
]

(36)

There are a variety of potential choices for Ψt, based on the potential use of
bootstrapping and baseline substraction:
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Ψt = Q̂MC(st, at) =

∞∑
i=t

γi · ri Monte Carlo target

Ψt = Q̂n(st, at) =

n−1∑
i=t

γi · ri + γnVθ(sn) bootstrap (n-step target)

Ψt = ÂMC(st, at) =

∞∑
i=t

γi · ri − Vθ(st) Baseline subtraction

Ψt = Ân(st, at) =

n−1∑
i=t

γi · ri + γnVθ(sn)− Vθ(st) Baseline + bootstrap

Ψt = Qθ(st, at) Q-value approximation

10.2 Deterministic Policy Gradient

As a second approach, we may also use a learned value function as a differentiable
target to optimize the policy against, i.e., let the policy follow the value function.
An example is the deterministic policy gradient. We will introduce φ for the pa-
rameters of the value function, to discriminate them from the policy parameters.
Imagine we collect data D and train a value network Qφ(s, a) following Chapter
7. We can then attempt to optimize the parameters of a deterministic policy by
simply optimizing the prediction of the value network:

J(θ) = Es∼D
[ n∑
t=0

Qφ(s, πθ(s))
]
,

which by the chain-rule gives the following gradient expression

∇θJ(θ) = Es∼D
[ n∑
t=0

∇aQφ(s, a) · ∇θπθ(s)
]
. (37)

In essence, we first train a state-action value network based on sampled data,
and then let the policy follow the value network, by simply chaining the gradients.
Thereby, we push the policy network in the direction of those actions a that
increase the value network prediction, i.e., towards actions that perform better.
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11 Gradient-free policy search

A very simple approach to gradient free policy optimization is shown in Algorithm
6, better known as the cross-entropy method. The idea is straighforward: we
1) initialize a Gaussian distribution over the parameter vector, 2) sample a set
of parameter realizations from this distribution, and evaluate their cumulative
reward, 3) we select the elite u set, i.e., the set of policy parameters which
achieved the best u% performance, 4) we refit the Gaussian distribution to the
elite set, and 5) repeat this procedure for a predetermined number of iterations.
This is an example of an evolutionary algorithm, where we repeatedly adjust the
population to the samples which performed best in the previous iteration.

Algorithm 6: Cross-entropy method (CEM) for reinforcement learning

Input: A differentiable policy πθ(a|s), parametrized by θ ∈ Rd, where
θ ∼ N (µ, σ). Number of iterations niter, number of samples
nsample, top percentage u.

Initialization: Randomly initialize µ1 ∈ Rd and σ1 ∈ (R+)d.
for i = 1..niter do

Sample parameters θj ∼ N (µi,diag(σi)) for j = 1..nsample

Sample returns Rj ∼ πθj (a|s)
Select elite set of θj giving the top u% returns Rj
µi+1, σi+1 ← refit Gaussian on elite set

end
θ = µ
Return πθ(a|s)
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Part IV

Appendix: Supervised learning
This appendix quickly recaps some key aspects of supervised learning. Supervised
learning is the workhorse under reinforcement learning, and you need to properly
understand it to be able to, for example, use deep learning in RL.
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12 Representing a function

We often need to represent a function (in computer memory). We are interested
in representing an arbitrary function

f : X → Y,

where the domain and range can be discrete or continuous sets with arbi-
trary dimensionality. Often, we are rather interested in a conditional probability
distribution, i.e., that maps

X → p(Y),

where we map the domain to a probability distribution over the range. Repre-
senting a conditional probability allows us to model functions for which the input
does not always give the same output (which often occurs in the real world).

12.1 Analytically known versus learned function

Analytically known function In some cases, we may represent a function
in memory through an exactly known analytical expression. This is usually the
case for the rules of physics, or when we make explicit assumption for a particular
system.

Example: Newton’s second Law of Motion states that for objects with
constant mass

F = m · a,

where F denotes the net force on the object, m denotes its mass, and a
denotes its acceleration. In this case, the analytic expression defines the
entire function, for every possible combination of the inputs.

Learned function However, for most functions in the real world, we do not
know an analytical expression. Here, we enter the realm of machine learning, in
particular supervised learning. When we do not know an analytical expression
for a function, our best bet is to collect data (examples of (x, y)) and learn the
function based on this data.
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Figure 7: Example of learned function. We observe the blue datapoints. An
example learned function is the red line, which properly fits the data. The red
line allows us to make predictions for any new input.

Example: A company want to predict the chance that you buy a product
based on your age and gender. They collect many data points of x ∈ N×
{0, 1}, i.e., your age (a natural number) and gender (a binary indicator),
that maps to y ∈ {0, 1}, i.e., a binary indicator whether you bought a
product. They then want to learn the mapping

y = f(x).

12.2 Parametric versus non-parametric supervised learn-
ing

The major distinction within supervised learning is between parametric and non-
parametric learning methods.

Non-parametric learning

Non-parametric learning methods summarize the function by storing
the entire dataset.

Parametric methods have received most attention in literature, although non-
parametric methods, like Gaussian Processes, can provide good uncertainty esti-
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mates. However, we will focus on parametric approximation methods in
this chapter.

Parametric learning

Parametric learning methods summarize the function with a set of
parameters of fixed size, i.e., independent of the number of data

points.

We will generally denote the set of parameters by θ ∈ Θ. Often, the parameter
space is continuous, i.e., Θ ∈ RDθ . The main idea of parametric approximation
methods is to first specify a function form, which takes in the observed data
x ∈ X and parameters θ ∈ Θ. This functional form can then output

• A deterministic function, i.e.,

f : X ×Θ→ Y,

for which we will write fθ(x) to indicate the dependence on parameters θ.

• A probability distribution, i.e.,

X ×Θ→ p(Y),

for which we will write pθ(y|x) to indicate the dependence on θ.

While the data (x, y) is given, the parameters (θ) are free. The key idea of
parametric supervised learning is to find the parameters which best fit the data.

12.3 Key considerations of parametric supervised learning

The key steps (and considerations of parametric supervised learning are: 1) a
model specification for pθ(x), which tells us when a prediction is correct 2) an
optimization criterion, i.e., some indication of when predictions are correct (better
known as loss or fitness function) and 3) an optimization method, i.e., a way to
find the parameter combination that gives the best performance.

1. Model specification: Tabular learning versus function approximation

• Validity: local versus global (in principle only relevant for tabular
learning)

2. Optimization criterion: Loss (regression versus classification) or fitness

3. Optimization: gradient-based or gradient-free

We will discuss these steps in the following sections.
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13 Model specification

We will first discuss how to actually specify a model, without discussing yet how
to optimize it. There are two main parts of model specification:

1. Model type: tabular or function approximation, which mostly depends on
the dimensionality of the input x.

2. Model output: regression or classification, which depends on the space of
the output y (continuous or discrete).

13.1 Model type: tabular versus function approximation

13.1.1 Tabular learning

Tabular learning methods simply store a unique output y (or distribution p(y))
for every input x. The parameters θ are all the individual entries in the table.
Tabular methods do not actually need to be stored as a table. For example, a
search tree consisting of nodes with information is in machine learning terminol-
ogy also a table. Although the search tree is stored in nodes with pointers, in
the background we still have a unique prediction for every input (node), i.e., a
tabular format.

When the input spaces is discrete, tables are very natural. When it is contin-
uous and we still want to use a table, we can use discretization. Discretization is
a simple process where we divide the continuous space into bins, and only store
the solution for the entire bin.

Example: Imagine we instead have data from continuous X = [0, 10] to
discrete Y = {0, 1}, but we want to store it as a table.
We can then discritize X into 10 bins {b1, ...b10}, where b1 = [0, 1), b2 =
[1, 2), etc. We can then store a function X → p(Y, e.g.,

x y
[0, 1) 0
[1, 2) 0.3
[2, 3) 0.8
etc. ..

59



Local versus global tables Tabular models can be local or global.

• Learning algorithms usually approximate a global solution, meaning a solu-
tion for every possible input.

• We can also decide to temporarily only approximate a local solution, for
example because we know that the global solution is too large to fit into
memory. An example are planning methods, like α−β or Monte Carlo Tree
Search. These methods collect data for a solution in a tree, but the tree
only contains those states which are actually reached in the lookahead, not
all possible states. A local solution gets discarded after a while, for example
when we terminate the search (after a fixed budget) and execute the first
action.

The term ‘learning’ is often reserved for global solution methods, i.e., methods
that map an entire input space X to the output space. Tree search methods are
therefore often not considered learning, since they use a local solution method.

13.1.2 Parametric function approximation

Parametric function approximation methods do not build an entire table for every
possible point in the input domain X . Instead, they specify a functional form,
i.e., an analytic expression on how to connect the values that x takes to the
output. This is the crucial difference. Tabular methods treat every point in the
input space as unique (atomic), an never look at its actual content. Function
approximation methods do look inside the actual values of the input. Thereby,
they can generalize.

Example: We want to learn a mapping between X ∈ R to Y ∈ R. We
specify parameters θ = {b, c} ∈ R2, and specify the functional form for
fθ:

fθ(x) = b+ c · x

This is a simple example of linear regression. We will can now try to
optimize the parameters b and c to best predict the data.

The most successful class of parametric function approximators these days
are (deep) neural networks. These essentially stack several layers of non-linear
regressions on top of eachother, but the principle is still the same.
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13.2 Comparing tabular and function approximation rep-
resentation

Tables and function approximation each have their benefits and problems, which
we summarize in Table 7. The benefits of tabular representations are easy to
understand: 1) they are exact (for discrete input spaces), and 2) that they are
relatively simple to store/learn (for example, for every input we simply store the
mean output in the data). However, they also have serious drawbacks once the
dimensionality of the problem increases.

However, tabular learning has two serious drawbacks: 1) they do not scale
to high-dimensional problems (due to the curse of dimensionality), and 2) they
cannot generalize information. We will explain both below.

13.2.1 Curse of dimensionality

So far we mostly discussed low dimensional input and output space. In real-world
problems, especially the input space of functions is usually much larger.

Example: A classic problem in computer vision is image classification,
i.e., predicting what type of object is visible in an image (which is also
a crucial preliminary for reinforcement learning where the inputs are im-
ages). Imagine we have low-resolution greyscale images of 100x100 pixels,
where each pixel takes a discrete value between 0 and 255 (a byte). Then,
the input space X ∈ {0, 1, .., 255}100·100, i.e., this space has dimensionality
100 · 100 = 10.000.

When the input space X is high-dimensional, we can never store the entire
solution as a table. The problem is the curse of dimensionality:

The curse of dimensionality states that the cardinality (number of
unique points) of a space scales exponentially in the dimensionality

of the space.

In equations, we have that

|X | = O
(

exp(Dim(X ))
)
,

where O(·) (”Big-O”) indicates that something ”grows in the order of”.
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Example: Imagine have a discrete input space X = {0, 1}D that maps to
a real number, Y = R, and we want to store this function as a table. We
will show the required size of the table and the required memory when we
use 32-bit (4 byte) floating point numbers:

Dim(X ) |X | Memory
1 2 8 Byte
5 25 = 32 128 Byte
10 210 = 1024 4KB
20 220 ≈ 1e6 4Mb
50 250 ≈ 1e15 4.5 million TB
100 2100 ≈ 1e30 5e21 TB
265 2265 ≈ 2e80 -

The right column (Memory) nicely illustrates how quickly exponential
growth develops. At a discrete space of size 20, it still seems like we are
doing alright, storing 4 Megabyte of information. However, at a size of 50,
we suddenly need to store 4.5 million Terabyte. We can hardly imagine
the numbers that follow. At an input dimensionality of size 265, our table
would have grown to size 2e80, which is roughly the estimated number of
atoms in the entire universe.

Due to the curse of dimensionality, the table that we need to store to represent
a function increases quickly when the size of the input space increases.

13.2.2 Generalization

A second problem of tables is that they do not generalize information.

Generalization means that - for functions in the real world - near
similar input in general leads to near similar output.

We say that real-world functions are generally smooth. This is due to the
regularity of the world, and therefore also applies to the decision-making problems
studied in reinforcement learning. For example, when we need to make a right
turn in our car at a certain crossing, then we will still need to make the same
turn when we slightly alter the lightning.

However, tables cannot generalize, since they store an individual entry for
every unique input/output pair. Therefore, the data for one pair can never
influence the predictions for another pair. As we have just discussed, the tables
may quickly grow really large, and we will therefore have many table entries for
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Figure 8: Illustration of generalization. Datapoints in dots, learned function as a
dotted line. Middle: good generalization as present in the true function. Similar
input generally has similar output (the function does not acutely fluctuate). Left:
underfitting, where we lose our ability to properly generalize to new datapoints.
Right: overfitting, where we also lose our ability to make accurate predictions for
new datapoints.

Table 7: Benefits and problems of tabular representation versus function approximation
Benefit Problem

Table • Exact

• (Easy to design)

• Curse of dimensionality

• No generalization

Function
approximation

• Generalization

• Lower memory require-
ment (scales to high-dim)

• Approximation errors

which we have not observed any data. Therefore, generalization is crucial in large
problems.3

In short, both tabular representations and function approximation have their
benefits, summarized in Table 7. In large problems, we will in principle always
need function approximation, if we want to store a global solution (i.e., for every
possible input). However, tabular approaches have their value in small problems,
and also in larger problems when we use local solution, e.g., only store a solution
for a small number of input points of current interest.

3Note that discretization of a continuous space does allow for partial generalization within
a bin. However, we will fit a stepwise function over the bins, which is an approximation class
with very low capacity (we can not represent many functions), and we will likely not generalize
well.
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13.3 Output type: regression versus classification

The final part of the model specification depends on the type of output space.
When the output space is continuous, we call it a regression problem, while a
discrete output space relates to classification.

13.3.1 Regression

Deterministic continuous prediction When the output space is continuous
and we want a deterministic prediction, we can simply output a vector of number
with the same dimensionality as y:

y = fθ(x)

Continuous distribution When we instead want to predict an entire dis-
tribution, we can let the model output parameters of a continuous probability
distribution. For example, we could assume a Normal distribution for y, let fθ(x)
output two numbers for every x, and specify:

pθ(y|x) = N (µθ(x), σθ(x)) =
1

σθ(x)
√

2π
exp

(
− (y − µθ(x))2

2σθ(x)2

)
where the mean µθ(x) = fθ,1(x) is the first element of the model output, and

the standard deviation σθ(x) = efθ,2(x) is the exponential of the second element.
The exponentiation ensures that the variance stays positive.

13.3.2 Classification

For classification we will always output a discrete distribution (there is no deter-
ministic discrete prediction). To specify the parameters of a discrete distribution
of size K, we need to predict K elements (or actually K−1) and ensure that they
sum to one. The common way to ensure this is through the softmax function.
We let the model output a vector fθ(x) of length K, and specify the discrete
distribution as:

pθ(y|x) = softmax(fθ(x)) =
efθ(x)∑
k e

fθ,k(x)

where the denominator sums over the elements of fθ(x). The exponentiation
again ensures that probabilities are positive, and the denominator term ensures
that they sum to one. Often, we also introduce a temperature parameter τ .
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14 Loss function

To find the best parameters, we typically need some indication when the learned
function performs well. We can do this by specifying a loss function. The loss
should penalize when our prediction is far off from the true observation. We can
in principle come up with any loss function we want, as long as it penalizes the
model when it makes predictions far away from the data. A simple example is
the well-known mean-squared error loss for regression problems:

LMSE(θ|D) =
1

ND

ND∑
i=1

(yi − fθ(xi))2

where D denotes the dataset, and i indexes over the dataset. Squaring the
error between each prediction and true observation ensures that all losses are
positive, i.e., negative and positive errors have equal contribution.

It turns out that the MSE loss is actually a special case of a more generic
principle, known as maximum likelihood estimation (MLE). We have already seen
that it can be useful to predict the entire distribution pθ(y|x), since it allows us
to model stochastic phenomena. However, it turns out that we can also use these
probibalistic approaches to construct loss function, by finding parameters that
maximize the probability of the observed data.

14.1 Maximum likelihood estimation

A common approach to loss functions is to use maximum likelihood estimation,
which attempts to find the parameters that maximize the probability of the ob-
served data. In those cases, we are actually learning a conditional probability
distribution p : X ×Θ→ p(Y).

The likelihood of the data is

pθ(y|x) =

ND∏
i=1

pθ(yi|xi),

and our goal is to find the parameters that maximize the likelihood of the
data, known as the maximum likelihood estimate (MLE):θ? = arg maxθ pθ(y|x).
We can turn the likelihood into a loss (’something we want to minimize’), by
taking the negative log likelihood (NLL):
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NLL(θ|y,x) = − log pθ(y|x)

= − log

ND∏
i=1

pθ(yi|xi)

=

ND∑
i=1

− log pθ(yi|xi)

∼ 1

ND

ND∑
i=1

− log pθ(yi|xi)

= ED

[
− log pθ(y|x)

]
(38)

which we can do because the log function is monotone, and it also nicely
turns the product into a sum. The last equation is actually the cross-entropy
between the data distribution and the model distribution:

H[pdata(y|x), pθ(y|x)].

See Chapter 2 for details on the cross-entropy. We will now show the two most
common applications of this idea, for regression (continuous y) and classification
(discrete y).

14.2 Regression

Regression settings are commonly trained on the mean-squared error (MSE). We
will show how this is actually a form of maximum likelihood estimation when we
assume a Gaussian distribution with fixed standard deviation. We assume the
following form for p(y|x):

p(y|x) = N (fθ(x), σ) =
1

σ
√

2π
exp

(
− (y − fθ(x))2

2σ2

)
i.e., a normal distribution where we only predict the mean as fθ(x) and fix

the standard deviation at some arbitrary constant a.
When we plug the above equation into the NLL equation, and drop the de-

pendence on σ (since it is a constant we will not optimize for), we get:
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L(θ|y, x) =
1

ND

ND∑
i=1

− log pθ(yi|xi)

L(θ|y, x) =
1

ND

ND∑
i=1

− log
( 1

σ
√

2π
exp

(
− (yi − fθ(xi))2

2σ2

))
L(θ|y, x) =

1

ND

ND∑
i=1

(yi − fθ(xi))2 (39)

where D denotes the dataset of size ND, and i indexes over entries in the
dataset. This is known as the mean-squared error (MSE) loss, and is very common
in supervised learning. In effect, we simply take the error between the true output
yi and our prediction fθ(xi), which is very intuitive. The squaring of the error
ensures that we penalize both positive and negative errors (in equal amount).
Note that this a function of θ, since we want to optimize these parameters.

Example: For the model y = fθ(x) = b+ c · x, the MSE loss would be

L(θ|y, x) =
1

ND

ND∑
i=1

(
b+ c · xi − yi

)2
,

y = fθ(x) = b+ c · x

14.3 Classification

Classification problems, where the output is discrete, are often trained on the
cross-entropy loss with, for example, softmax predictions of pθ(y|x):

L(θ|y, x) == ED

[
− log pθ(y|x)

]

= − 1

ND

ND∑
i=1

log
( efθ,yi (x)∑

k e
fθ,k(x)

)
(40)

where fθ,yi(x) means that we select the element of fθ(x) for which yi is equal to
1 (i.e., the true label). The above equation essentially maximizes the probability
of each true observed label.
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Example: Imagine we have a three class classification problem with a
single independent variable, i.e., X = R and Y = {0, 1}3 (we call this a
one-hot encoding, where we have a vector for the number of categories,
which has a single one at the true observation). We will assume the
parameters vectors b ∈ R3 and c ∈ R3 are vectors of size three. We
specify:

fθ(x) = b + c · x

which now also outputs a vector of length three.
We specify pθ(y|x) = softmax(fθ(x)) which outputs a probability distri-
bution of length three. When we use a one-hot encoding for the labels,
y ∈ [0, 1]3, we can train our model on

L(θ|y, x) = − 1

ND

ND∑
i=1

yi · log
( eb+c·xi∑

k e
b+c·xi,k

)
This model is better known as logistic regression.
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15 Optimization

In the last step we want to find the optimal parameters θ?, i.e., the parameters
which make the loss on the observed data small (or actually, the parameters
which make the loss on a validation set small).

θ? = arg min
θ

L(θ|D) (41)

15.1 Gradient-based optimization

Gradient-based optimization use the derivative of the objective to find the opti-
mum. In the case of a loss minimization, we may then apply gradient descent,
which in each iteration of the algorithm pushes the parameters in the direction
of the negative gradient:

θ′ = θ − η · ∂L(θ|D)

∂θ
(42)

for learning rate η ∈ R+. A full algorithm for gradient ascent, which only
changes the minus into a plus, is given in Alg. 2.

15.1.1 Gradient-based updates on tables

In a deterministic table, the approximation function for a datapoint x is actually
a tabular look-up

fθ(x) = θx, (43)

i.e., we search for the table entry θj where the datapoint x belongs to.

Maximum likelihood on tables In the tabular approach, we may actually
analytically find the optimum of the above optimization. For a single table entry
we write θj . We will show the case for a regression, where the table entry contains
a continuous number, where we use a mean-squared error:

L(θ|D) =

nθ∑
j=1

nj∑
k=1

1

2
(θj − yj,k)2

where j sums over all parameters, and k sums over all entries in the data
where xj,k belongs to table entry θj . We can differentiate the above expression
towards a single table parameter:
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∂L(θ|D)

∂θj
=

nj∑
k=1

(θj − yj,k) (44)

When we equate the above expression to 0, we can solve for θj :

θj =

∑nj
k=1 yj,k
nj

. (45)

This is a very intuitive result, since we simply set each table entry to the
mean of the observations for that cell. We call it the tabular maximum likelihood
estimate.

Example: We learn a function from X = {1, 2, 3} to discrete Y = {0, 1}.
We observe D = 〈(1, 0), (2, 0), (2, 1), (1, 0), (1, 1), (3, 0), (3, 0)〉. The tabu-
lar model would estimate (verify this):

x y
1 1/3
2 1/2
3 0

Incremental/general tabular updates Often, we do not want to update
a table on an entire dataset, but rather have data as an incoming stream, for
example during planning or RL. We no longer find an exact solution, but rather
gradually move the solution in the direction of the observed data. We can follow
the general learning scheme of Eq. 42 for a table to get an incremental learning
scheme. For simplicity, we will write the equation for the update of a single table
entry θj based on an observed data-pair (x, y), where xi falls in the table entry
of θj . Let’s assume a mean-squared error loss, for which we already computed
the gradient in Eq. 44. Plugging this equation into Eq. 42, we get the generic
tabular update:

θj ← θj − η · (θj − yj,k) (46)

Rearranging terms we get:

θj ← (1− η) · θj + η · yj,k (47)

where η ∈ [0, 1), i.e., in the case of tabular learning the learning rate has a
restriction. The above formulation is the generic tabular learning update, which
moves the estimate a small step in the direction of the new observed data. Some
special cases of this equation are:
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• Standard learning update: Where η ∈ (0, 1) is fixed throughout learning.

• Replace update: When we set η = 1, we get

θj ← yj,k

, which completely replaces the new table entry with the current estimate
at every step. We observe this in some planning approaches, like A? or α-β
pruning.

• Average/MLE update: When we set η = 1
n , we get

θj ←
n− 1

n
· θj +

1

n
· yj,k,

where n denotes the number of updates so far. This essentially retrieves
the MLE estimate (Eq. 45), but in an incremental update fashion. This
averaging update is for example used in Monte Carlo Tree Search (MCTS).

Note that these planning methods are technically not considered learning, but
as we see one can phrase their updates as tabular learning updates. The above
discussion of tabular updates may seem a bit lengthy and complicated for such
intuitive choices. Nevertheless, it is good to see the bigger picture: how tabular
updates are based on the same principle as function approximation updates, and
how planning updates are actually tabular representation methods.

15.1.2 Gradient-based updates with function approximation

Gradient-based optimization on function approximation is usually implemented
with gradient descent and the chain rule. We will take deterministic regression
as an example. We want to compute the gradient

∇θL(θ|D) = ∇θED
[(
fθ(x)− yi

)2]
=

1

ND

ND∑
i=1

∇θ
(
fθ(x)− yi

)2
(48)

However, when the size N of the dataset D grows larger, then the above
summation becomes very computationally expensive. Therefore, most practical
algorithms approximate the above gradient with a much smaller sample from the
dataset, a minibatch of size M(common choices of M are 32 or 64). We call
this stochastic gradient descent (SGD). The SGD gradient becomes:
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∇θL(θ|D) ≈ ND
M

M∑
m=1

∇θ
(
fθ(xm)− ym

)2
It turns out that this algorithms works very well in practice. The gradient is

noisy, but often reaches a reasonable optimum. The main benefit of the algorithm
is that it scales to large datasets (as we can keep M fixed to a small number,
independent of dataset size ND).

15.2 Gradient-free optimization

Finally, we can also use gradient-free optimization methods, although gradient-
based methods largely dominate the supervised learning community at this mo-
ment. Examples include evolutionary strategies, simulated annealing, the cross-
entropy method, etc. We will not go into details here.
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