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INTRODUCTION

We consider Rapidly-exploring Random Trees [1], the most popular sampling-based
planning algorithm, and its application to kinodynamic planning. RRT builds a graph
structure with the states of the system as nodes and the trajectories of the system be-
tween two states as edges. The algorithm selects a node to expand by randomly
sampling a point in state space and then expand from the nearest node in the cur-
rent graph. Expension is done by means of a local planner that aims to reach the
randomly-sampled point. These steps happen online, so computation time is crucial.
Unfortunately, in state-space, distance computation and (local) planning are compu-
tationally expensive [1].

A promising approach, which we call Learning-RRT, was proposed recently [2, 3]
and has already shown promising initial results [4]. Learning-RRT involves an offline
machine learning phase that learns the distance and steering function in the RRT. An
optimal control algorithm provides a database of optimal trajectories, which is the
input for a supervised learning algorithm. This algorithm learns to approximate the
functions the RRT requires. Supervised learning provides two benefits: 1) general-
ization over state-space and 2) fast online predictions. Thereby, the computational
burden of trajectory optimization does not have to be repeated for new situations, and
is shifted offline.

Note that the final trajectory found by the RRT-algorithm is in general not optimal,
even though the trajectories in the database are optimal. The database therefore is
not build up of optimal trajectories to improve the cost to go of the RRT-trajectory.
Rather, optimality improves learning performance by providing a meaningful cost-to
go metric and trajectories that tend to have a similar shape if they connect similar
points in state space.

DATASET BIAS PROBLEM

In our recent paper [5], we identified a key problem with the database created by opti-
mal control algorithms: their trajectories are local optima. This causes a bias that in-
terferes with learning performance. The problem is illustrated for an artificial dataset
in Figure 1 (top), where in the middle input region we have the global optimum at
the bottom, but there are local optima above it. A standard function approximator
(with squared loss) for a given point in input space (independent variable) predicts
the expectation of the dependent variable. This results in the conditional mean of
the datapoints, as shown by the green line in Figure 1 (top). Note how the predicted
function deteriorates in the middle segment, where it predicts the average instead of
the bottom (optimal) cost.

In the context of learning RRTs, this is problematic for predicting the cost function
and especially harmful for predicting the control parameters. Averaging over two
locally optimal control inputs by no means guarantees that we end up anywhere
close to the target. Below we discuss two potential solutions to this problem: a
data-cleaning algorithm, and the use of a generative model.
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Figure 1: The data-bias problem and the effect of the d parameter in the data cleaning algo-
rithm. The top figure shows an imaginary dataset, which has a problem with bias
in the middle of its domain. The fitted function is a poor approximation of the least
cost part of the datapoints. The second figure shows a cleaned dataset where the
value for d was chosen too large: the bias is gone, but there is not enough resolu-
tion left to accurately fit the function. In the third function d is chosen to small:
not all bias is removed. Finally, the bottom figure shows a cleaned dataset with a
proper choice for d: the bias is removed, and enough resolution remains.

SOLUTION 1: DATA CLEANING

Our dataset contains of points with four attributes: an initial state, a final state, pa-
rameters that describe the input signal and a cost to go. The bias occurs due to some
initial-final state combination occurring multiple times, but with a different input sig-
nal and cost. In those cases, we are interested in retaining the point that is the lower
bound of the cost for that initial-final state combination. We prefer to remove points
in high-density regions, as in low-density regions there is little to throw away, and we
may only hope that our data are accurate. So we implicitly remove from high density
regions by first uniformly sampling a point from our dataset. We then search for its
nearest neighbour in the dataset based on a Euclidean distance. If this neighbour is
within a distance d from our sampled point, we remove the node of the two with
the highest cost. Otherwise, we retain both points. This process is repeated until no
points are removed any longer, after which we return the cleaned dataset.

The effect of the parameter d on the cleaning is shown in Figure 1. We were able
to empirically find an adequate setting for d for the pendulum swing-up problem, see
[5]. However, we also noted that performance of the algorithm was sensitive to this
parameter. We are therefore looking for ways to make the cleaning algorithm more
sophisticated, i.e., capable of more accurately finding points that should be removed.

SOLUTION 2: GENERATIVE MODEL

There is an alternative to a cleaning algorithm. As we are not typically looking for
the optimal motion, but a reasonable and feasible one, it is likely fine if our model
returns locally optima. That is, intuitively, we are satisfied as long as the model
returns a cost and steering signal that are consistent, and get the system from the
specified initial state to the final state. One way to obtain such a model is the use of
generative models[6]. Specifically, we use a conditional variational auto-encoder[7],
for this purpose. Specifically, we train a decoder network to estimate the probability
P(steering signal, costlinitial state, final state, latent space), where the latent space is
used to determine which cost-steering input combination is returned by the model.

Following [8], this decoder is trained together with an encoder, such that the latent-
space can be sampled according to some pre-specified prior at test-time. By sampling
from this prior, and subsequently from the learned distribution, we obtain a consistent
cost-steering signal combination.

This approach is currently being implemented. Two important steps are still to be
taken: 1) testing the ability of the model to capture the underlying probability func-
tion, and 2) studying the effects of using a generative model (i.e., returning locally
optimal trajectories) on the convergence of the RRT algorithm.
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