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introduction
The exploration/exploitation trade-off is a core problem of reinforcement
learning. Nearly all RL algorithms maintain point estimates of the action-
value function and/or policy. To ensure exploration, they apply some ran-
dom perturbation (called ‘undirected’ exploration) to these point estimates.1

However, this approach is fundamentally inefficient, as it does not discrimi-
nate between an action that has been extensively tried and deemed subopti-
mal, and an action that has never been tried and requires further exploration
(they may both have a low action-value point estimate) [1].

In this work we propose to maintain distributions over value functions.
Although the action-value is a single number by definition (it is an expecta-
tion), it makes sense to treat its estimate as a random variable (from a statis-
tical point of view). The benefit is that the remaining uncertainty about the
value of each action provides a natural trade-off between exploration and
exploitation, with more exploration as long as we are uncertain, and increas-
ingly more exploitation once we become certain about the environment and
task.

two types of value function uncertainty
Uncertainty in the value function may for the RL setting originate from two
sources[2]2

1. Visitation uncertainty: when we have infrequently (or even never) vis-
ited a particular state-action pair, we should be inherently uncertain
about it. This is the traditional statisitical uncertainty that is also stud-
ied in the bandit setting.

2. Bellman uncertainty: we may visit a certain state-action pair more of-
ten, but if we are still uncertain about what to do next, then repeatedly
visiting the state-action pair should not make us certain yet about its
value. More precisely, for a 1-step bootstrap estimate of the value of
state-action we plug in the current value estimate of one-step ahead.
However, this value is uncertain itself, because we might not know
what is optimal to do from that point. This type of uncertainty makes
RL fundamentally different from the bandit setting, as we should ef-
fectively propagate uncertainty through the Bellman equation/MDP.

For this work we explore a solution to each type of uncertainty. We fo-
cus on function approximation methods based on deep (non-linear) neural
networks.

1 For example ε-greedy/Gaussian noise for a discrete/continuous action space, respectively.
2 There is a third possible source of uncertainty caused by an uncertain, learned transition model,

known as model-based RL. We ignore this problem for this work (we always sample in a
ground-truth simulator).
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Figure 1: Chain domain, based on Osband et al. [1].

1. Bayesian drop-out: Bayesian drop-out [3] in neural networks provides
a simple method to approximate/sample from the posterior predictive
distribution, which tracks the visitation uncertainty mentioned above.

2. Gaussian Q-value propagation: We propagate uncertainty by parametriz-
ing every action-value als a Gaussian, where we learn both the mean
µ and standard deviation σ. Then, when we bootstrap the value of an
state-action, we sample m values from the next state (s ′) value distri-
bution, instead of sampling only the mean (once).

As a policy, we then perform Thompson sampling [4] on the uncertain
values, which selects each action with probability equal to the probability
that it is the optimal one, when averaging out all uncertainty.

experiments
We study these ideas on the Chain domain (Fig. 1). This MDP consists
of a chain of states {s1, s2..sN} of length N and two actions {a1,a2}. The
agent should learn to walk all the way to the end of the chain, by repeatedly
taking action a2, to receive a reward of 1. All actions a1 terminate the
episode without reward. Although the domain has small dimension, it is
actually very challenging for ‘undirected’ exploration methods (as there is
no information until we hit the correct chain for the first time, which makes
their exploration time scale exponentially).

Fig. 2 shows the results of ε-greedy and Thompson sampling on the two
types of uncertainty, for different chain lengths N. For the short chain, we
see Thompson sampling learning much faster than the ε-greedy methods.
When we increase the length of the chain, we see that ε-greedy methods
start to completely fail, while the Thompson sampling methods still solve
the problem. Most stable performance is obtained by the Bellman uncer-
tainty propagation, which is further improved when we pre-train the net-
work (after random initialization) on N(0, 5) noise to remove any initializa-
tion bias.

Figure 2: Learning curves for different exploration methods, split-up for different
Chain domain lengths. Curves averaged over 5 repetitions.

conclusion
We introduced uncertain value networks, based on Bayesian inference in
neural networks, to track distributions over value functions. Our results
show a vast increase in exploration time in a domain with a specific explo-
ration challenge. Future work includes investigation in high-dimensional
domains as well as joint modelling of both types of uncertainty.
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