
Artificial Neural Networks 3:

Deep Learning

Course: Computational Intelligence (TI2736-A)

Lecturer: Thomas Moerland

Recap: Machine Learning

= Function approximation

Today: focus on parametric, supervised learning

y = f(x;θ)

Recap: Machine Learning

= Function approximation

Today: focus on parametric, supervised learning

y = f(x;θ)

Recap: Machine Learning

x

y

θ

target

parameters

input

Recap: Machine Learning

x

y

θ

target

parameters

input

Value to learn
Values given
by the data

Recap: Machine Learning

x

ŷ

θ

y

L

target
model

prediction

parameters

input

loss

Recap: Machine Learning

x

ŷ

θ

y

L

target
model

prediction

parameters

input

The parametric model

1

loss

Recap: Machine Learning

x

ŷ

θ

y

L

target
model

prediction

parameters

input

loss = when does the model do good

The parametric model

1

2

Recap: Machine Learning

x

ŷ

θ

y

L

target
model

prediction

parameters

input

Goal = tune the
parameters θ to
minimize the loss
(= optimization)

The parametric model

1

2

3

loss

Content for today

1. The Feedforward Network
a. Artificial Neural Network (ANN): A Parametric Model

b. Loss Functions

c. Numerical Optimization

2. Advanced Neural Network Architectures
a. Convolutional Neural Network (CNN)
b. Recurrent Neural Network (RNN)

3. Deep learning

2

1

3

1. The Feedforward Network

x
1

x
2

h
1

h
2

h
3

ŷ

input

prediction

hidden
layer

Artificial Neural Network (ANN)

=

stacked sequence of non-linear
regressions

("fully connected layers")

ANN: A Parametric Model

Artificial Neural Network structure

x
1

x
2

h
1

h
2

h
3

ŷ

input

prediction

hidden
layer

per layer:

Artificial Neural Network structure

x
1

x
2

h
1

h
2

h
3

ŷ

input

prediction

hidden
layer

per layer:
input

(vector)

bias
(vector)weight

(matrix)

output
(vector)

layer number

non-linear
function

(element-wise
to vector)

Artificial Neural Network structure

x
1

x
2

h
1

h
2

h
3

ŷ

input

prediction

hidden
layer

per layer:

Q: How many parameters does this
network have?

input
(vector)

bias
(vector)weight

(matrix)

output
(vector)

layer number

non-linear
function

(element-wise)

Artificial Neural Network structure

x
1

x
2

h
1

h
2

h
3

ŷ

input

prediction

hidden
layer

per layer:

Q: How many parameters does this
network have?

A: 13

First layer: 6 weights + 3 biases

Second layer: 3 weights + 1 bias

input
(vector)

bias
(vector)weight

(matrix)

output
(vector)

layer number

non-linear
function

(element-wise)

Activation Functions

Q: Why not stack multiple linear layers?

A: Composition of linear transformations is still linear.

Activation Functions

Q: Why not stack multiple linear layers?

A: Composition of linear transformations is still linear.

Activation function = non-linear transformation

Activation Functions

Activation Functions

1980-2010 : Sigmoid & Tanh. Problems: saturate (both sides) & hard to copy input

2010-now : ReLu & ELU (Partially linear functions): gradient flows more easily

ANN: Layer Stacking

x
1

x
2

h
1

h
2

h
3

ŷ

input

prediction

hidden
layer

Idea:

Repeatedly apply the input to such a
parametrized layer

ANN: Layer Stacking

x
1

x
2

h
1

h
2

h
3

ŷ

input

prediction

hidden
layer

Idea:

Repeatedly apply the input to such a
parametrized layer

or, when fully written out

Note: In the last layer we do not apply
a standard non-linearity g(). More

about this in the loss function part.

B. Loss function

General idea:

1. Specify error measure between ŷ (prediction) and y (true data target)

2. Minimize that quantity over the entire dataset

B. Loss function

General idea:

1. Specify error measure between ŷ (prediction) and y (true data target)

2. Minimize that quantity over the entire dataset

Two important considerations:

1. Type of y variable (regression vs classification)

2. Deterministic versus probabilistic loss

B. Loss function

1. Regression versus classification (= type of target variable (y))

B. Loss function

Target type (y) Name Prediction Network output

Continuous Regression Number on real line Direct prediction (1 head) or
parameters of contin prob. distr.

Discrete Classification Class label out of a set Usually one network head per class

1. Regression versus classification (= type of target variable (y))

B. Loss function

1. Regression versus classification (= type of target variable (y))

Cardinal example: Regression on Mean-Squared Error (MSE)

Target type (y) Name Prediction Network output

Continuous Regression Number on real line Direct prediction (1 head) or
parameters of contin prob. distr.

Discrete Classification Class label out of a set Usually one network head per class

B. Loss function

1. Regression versus classification (= type of target variable (y))

Cardinal example: Regression on Mean-Squared Error (MSE)

Target type (y) Name Prediction Network output

Continuous Regression Number on real line Direct prediction (1 head) or
parameters of contin prob. distr.

Discrete Classification Class label out of a set Usually one network head per class

true labelprediction

square the
error

sum over
whole dataset

B. Loss function

1. Regression versus classification (= type of target variable (y))

Cardinal example: Regression on Mean-Squared Error (MSE)

Target type (y) Name Prediction Network output

Continuous Regression Number on real line Direct prediction (1 head) or
parameters of contin prob. distr.

Discrete Classification Class label out of a set Usually one network head per class

true labelprediction

square the
error

sum over
whole dataset

Q: why the square of the error?

1. Regression versus classification (= type of target variable (y))

Cardinal example: Regression on Mean-Squared Error (MSE)

B. Loss function

Target type (y) Name Prediction Network output

Continuous Regression Number on real line Direct prediction (1 head) or
parameters of contin prob. distr.

Discrete Classification Class label out of a set Usually one network head per class

true labelprediction

square the
error

sum over
whole dataset

Q: why the square of the error?

A: penalize positive and negative errors +
easier derivative (compared to absolute error)

B. Loss function

2. Deterministic versus probabilistic loss

Main idea of probabilistic loss: The network predicts the parameters of a probability
distribution out of which the observed y would be sampled, instead of predicting y directly.

B. Loss function

x
1

x
2

h
1

h
2

h
3

μ σ

2. Deterministic versus probabilistic loss

Main idea of probabilistic loss: The network predicts the parameters of a probability
distribution out of which the observed y would be sampled, instead of predicting y directly.

For example:

ŷ ~ N(.|μ,σ) and

B. Loss function

2. Deterministic versus probabilistic loss

Main idea of probabilistic loss: The network predicts the parameters of a probability
distribution out of which the observed y would be sampled, instead of predicting y directly.

Benefits:

1. Model stochastic output & sensor noise
2. Directly have a loss function:

'Maximum likelihood estimation' = learn a model that gives maximum probability to
the observed data

See lecture notes for details (also for classification case)

Gradient Descent

C. Numerical optimization

Gradient Descent

Update rule:

C. Numerical optimization

Learning rate

NN objective/cost

=

Non-convex

Learning rate = crucial

Too small : no progress

Too large : unstable

Non-Convex Objective Function

Importance of learning rate

Two issues around the same problem:

How do we get the gradients in feasible computational time?

1. Datasets are usually large:

Solution: stochastic gradient descent (SGD)

2. Networks are usually large:

Solution: backpropagation ('backprop')

Gradient Descent for Neural Networks

Stochastic Gradient Descent

True gradient is a sum over the entire dataset:

Dataset size (N) may be millions.

Stochastic Gradient Descent

True gradient is a sum over the entire dataset:

Dataset size (N) may be millions.

Solution: approximate the gradient with a sample from the dataset
(= a 'minibatch' per parameter update)

Minibatch size (usually m=32 or m=64) stays fixed when dataset grows!

Backpropagation

First: How do we get the gradient anyway?

Backpropagation

First: How do we get the gradient anyway?

Required: Chain Rule of Calculus

Example:

z = f(x) h = g(z) --> h = g(f(x))

How do we get dh/dx?

x z hf() g()

Backpropagation

First: How do we get the gradient anyway?

Required: Chain Rule of Calculus

Example:

z = f(x) h = g(z) --> h = g(f(x))

How do we get dh/dx?

chain = multiply the gradients of the subfunctions

(generalizes to case where x,z and h are vectors - need partial derivatives (see lecture notes))

x z hf() g()

Class example: NN gradients

Q: To update weight w
1

 we need dL/dw
1

.
 Give dL/dw

1
 (symbolic).

x
1

h

ŷ y

L

h = g(w
1

x
1

+b
1

)

ŷ = w
3

h+b
2

L = (ŷ - y)2

Class example: NN gradients

Q: To update weight w
1

 we need dL/dw
1

.
 Give dL/dw

1
 (symbolic).

A:

x
1

h

ŷ y

L

h = g(w
1

x
1

+b
1

)

ŷ = w
3

h+b
2

L = (ŷ - y)2

Class example: NN gradients

Q: To update weight w
1

 we need dL/dw
1

.
 Give dL/dw

1
 (symbolic).

A:

Q: Can you further write out dh/dw
1

?
(think about the non-linearity)

x
1

h

ŷ y

L

h = g(w
1

x
1

+b
1

)

ŷ = w
3

h+b
2

L = (ŷ - y)2

Class example: NN gradients

Q: To update weight w
1

 we need dL/dw
1

.
 Give dL/dw

1
 (symbolic).

A:

Q: Can you further write out dh/dw
1

?
(think about the non-linearity)

x
1

h

ŷ y

L

h = g(w
1

x
1

+b
1

)

ŷ = w
3

h+b
2

L = (ŷ - y)2

Class example: NN gradients

Q: Now our input x is actually a vector of
length 2. Can you give dL/dw

1
 and dL/dw

2
?

x
1

h

ŷ y

L

x
2

h = g(w
1

x
1

+w
2

x
2

+b
1

)

ŷ = w
3

h+b
2

L = (ŷ - y)2

Class example: NN gradients

Q: Now our input x is actually a vector of
length 2. Can you give dL/dw

1
 and dL/dw

2
?

A:

 x
1

h

ŷ y

L

x
2

h = g(w
1

x
1

+w
2

x
2

+b
1

)

ŷ = w
3

h+b
2

L = (ŷ - y)2

Class example: NN gradients

Q: Now our input x is actually a vector of
length 2. Can you give dL/dw

1
 and dL/dw

2
?

A:

large part of the gradient is the same

(= key idea of backpropagation)

x

1

h

ŷ y

L

x
2

h = g(w
1

x
1

+w
2

x
2

+b
1

)

ŷ = w
3

h+b
2

L = (ŷ - y)2

Backpropagation

Main idea:

- Efficiently store gradients and re-use them by walking backwards
through the network.

Backpropagation

Main idea:

- Efficiently store gradients and re-use them by walking backwards
through the network.

Class example: One full learning loop

x
1

h

ŷ

Let's assume some data and initialize parameters:

x
1

 = 2 w
1

 = 1.5 b
1

 = 3
x

2
 = -1 w

2
 = 2 b

2
 = -2

y = 6 w
3

 = 2.5 g(z) = ReLu = max(0,z)

y

L

x
2

h = g(w
1

x
1

+w
2

x
2

+b
1

)

ŷ = w
3

h+b
2

L = (ŷ - y)2

w

1

w

2

w

3

Class example: One full learning loop

x
1

h

ŷ

x
1

 = 2 w
1

 = 1.5 b
1

 = 3
x

2
 = -1 w

2
 = 2 b

2
 = -2

y = 6 w
3

 = 2.5 g(z) = ReLu = max(0,z)

Q: Compute ŷ (forward pass)

y

L

x
2

h = g(w
1

x
1

+w
2

x
2

+b
1

)

ŷ = w
3

h+b
2

L = (ŷ - y)2

w

1

w

2

w

3

Class example: One full learning loop

x
1

h

ŷ

x
1

 = 2 w
1

 = 1.5 b
1

 = 3
x

2
 = -1 w

2
 = 2 b

2
 = -2

y = 6 w
3

 = 2.5 g(z) = ReLu = max(0,z)

Q: Compute ŷ (forward pass)

A: z = (2*1.5) + (-1*2) + 3 = 4
h = max(0,4) = 4
ŷ = (2.5*4) - 2 = 8

y

L

x
2

h = g(w
1

x
1

+w
2

x
2

+b
1

)

ŷ = w
3

h+b
2

L = (ŷ - y)2

w

1

w

2

w

3

Class example: One full learning loop

x
1

h

ŷ

x
1

 = 2 w
1

 = 1.5 b
1

 = 3 z = 4
x

2
 = -1 w

2
 = 2 b

2
 = -2 h = 4

y = 6 w
3

 = 2.5 g(z) = ReLu ŷ = 8

Q: We assume the squared loss L = (ŷ - y)2.
Compute the loss for this datapoint.

y

L

x
2

h = g(w
1

x
1

+w
2

x
2

+b
1

)

ŷ = w
3

h+b
2

L = (ŷ - y)2

w

1

w

2

w

3

Class example: One full learning loop

x
1

h

ŷ

x
1

 = 2 w
1

 = 1.5 b
1

 = 3 z = 4
x

2
 = -1 w

2
 = 2 b

2
 = -2 h = 4

y = 6 w
3

 = 2.5 g(z) = ReLu ŷ = 8

Q: We assume the squared loss L = (ŷ - y)2.
Compute the loss for this datapoint.

A: L = (8 - 6)2 = 4

y

L

x
2

h = g(w
1

x
1

+w
2

x
2

+b
1

)

ŷ = w
3

h+b
2

L = (ŷ - y)2

w

1

w

2

w

3

Class example: One full learning loop

x
1

h

ŷ

x
1

 = 2 w
1

 = 1.5 b
1

 = 3 z = 4
x

2
 = -1 w

2
 = 2 b

2
 = -2 h = 4

y = 6 w
3

 = 2.5 g(z) = ReLu ŷ = 8

Q: Let backpropagate. Calculate dL/dw
3

.

y

L

x
2

h = g(w
1

x
1

+w
2

x
2

+b
1

)

ŷ = w
3

h+b
2

L = (ŷ - y)2

w

1

w

2

w

3

Class example: One full learning loop

x
1

h

ŷ

x
1

 = 2 w
1

 = 1.5 b
1

 = 3 z = 4
x

2
 = -1 w

2
 = 2 b

2
 = -2 h = 4

y = 6 w
3

 = 2.5 g(z) = ReLu ŷ = 8

Q: Let backpropagate. Calculate dL/dw
3

.

A:

y

L

x
2

h = g(w
1

x
1

+w
2

x
2

+b
1

)

ŷ = w
3

h+b
2

L = (ŷ - y)2

w

1

w

2

w

3

Class example: One full learning loop

x
1

h

ŷ

x
1

 = 2 w
1

 = 1.5 b
1

 = 3 z = 4
x

2
 = -1 w

2
 = 2 b

2
 = -2 h = 4

y = 6 w
3

 = 2.5 g(z) = ReLu ŷ = 8

Q: Now for dL/dw
1

 and dL/db
1

y

L

x
2

h = g(w
1

x
1

+w
2

x
2

+b
1

)

ŷ = w
3

h+b
2

L = (ŷ - y)2

w

1

w

2

w

3

Class example: One full learning loop

x
1

h

ŷ

x
1

 = 2 w
1

 = 1.5 b
1

 = 3 z = 4
x

2
 = -1 w

2
 = 2 b

2
 = -2 h = 4

y = 6 w
3

 = 2.5 g(z) = ReLu ŷ = 8

Q: Now for dL/dw
1

 and dL/db
1

A:

y

L

x
2

h = g(w
1

x
1

+w
2

x
2

+b
1

)

ŷ = w
3

h+b
2

L = (ŷ - y)2

First through the top layer

w

1

w

2

w

3

Class example: One full learning loop

x
1

h

ŷ

x
1

 = 2 w
1

 = 1.5 b
1

 = 3 z = 4
x

2
 = -1 w

2
 = 2 b

2
 = -2 h = 4

y = 6 w
3

 = 2.5 g(z) = ReLu ŷ = 8

Q: Now for dL/dw
1

 and dL/db
1

A:

y

L

x
2

h = g(w
1

x
1

+w
2

x
2

+b
1

)

ŷ = w
3

h+b
2

L = (ŷ - y)2

w

1

w

2

w

3

Class example: One full learning loop

x
1

h

ŷ

x
1

 = 2 w
1

 = 1.5 b
1

 = 3 z = 4
x

2
 = -1 w

2
 = 2 b

2
 = -2 h = 4

y = 6 w
3

 = 2.5 g(z) = ReLu ŷ = 8

Q: Now for dL/dw
1

 and dL/db
1

A:

y

L

x
2

h = g(w
1

x
1

+w
2

x
2

+b
1

)

ŷ = w
3

h+b
2

L = (ŷ - y)2

Re-use previous gradient

w

1

w

2

w

3

Class example: One full learning loop

x
1

h

ŷ

x
1

 = 2 w
1

 = 1.5 b
1

 = 3 z = 4
x

2
 = -1 w

2
 = 2 b

2
 = -2 h = 4

y = 6 w
3

 = 2.5 g(z) = ReLu ŷ = 8

Q: So dL/dw
3

=16, dL/dw
1

=20 and dL/db
1

=10.
Update parameters, take learning rate 0.01.

y

L

x
2

h = g(w
1

x
1

+w
2

x
2

+b
1

)

ŷ = w
3

h+b
2

L = (ŷ - y)2

w

1

w

2

w

3

Class example: One full learning loop

x
1

h

ŷ

x
1

 = 2 w
1

 = 1.5 b
1

 = 3 z = 4
x

2
 = -1 w

2
 = 2 b

2
 = -2 h = 4

y = 6 w
3

 = 2.5 g(z) = ReLu ŷ = 8

Q: So dL/dw
3

=16, dL/dw
1

=20 and dL/db
1

=10.
Update parameters, take learning rate 0.01.

A: w
1

 = 1.5 - 0.01*20 = 1.3
b

1
 = 3 - 0.01*10 = 2.9

w
3

 = 2.5 - 0.01*16 = 2.34

(Note: normally we update all parameters, i.e.
w

2
 and b

2
 as well)

y

L

x
2

h = g(w
1

x
1

+w
2

x
2

+b
1

)

ŷ = w
3

h+b
2

L = (ŷ - y)2

w

1

w

2

w

3

Class example: One full learning loop

x
1

h

ŷ

x
1

 = 2 w
1

 = 1.3 b
1

 = 2.9 z = 4
x

2
 = -1 w

2
 = 2 b

2
 = -2 h = 4

y = 6 w
3

 = 2.34 g(z) = ReLu ŷ = 8

Q: So we have update the parameters. Did our
prediction get better?

y

L

x
2

h = g(w
1

x
1

+w
2

x
2

+b
1

)

ŷ = w
3

h+b
2

L = (ŷ - y)2

w

1

w

2

w

3

Class example: One full learning loop

x
1

h

ŷ

x
1

 = 2 w
1

 = 1.3 b
1

 = 2.9 z = 4
x

2
 = -1 w

2
 = 2 b

2
 = -2 h = 4

y = 6 w
3

 = 2.34 g(z) = ReLu ŷ = 6.19

Q: So we have update the parameters. Did our
prediction get better?

A: z = (2*1.3) + (-1*2) + 2.9 = 3.5
h = max(0,3.5) = 3.5
ŷ = (2.34*3.5) - 2 = 6.19

Yes, we got much closer!
(8 → 6.19, while true y is 6)

y

L

x
2

h = g(w
1

x
1

+w
2

x
2

+b
1

)

ŷ = w
3

h+b
2

L = (ŷ - y)2

w

1

w

2

w

3

Summary: You just manually trained a
neural network (one learning loop)

x

ŷ

θ

y

L

target
model

prediction

parameters

input

Goal = tune the
parameters θ to
minimize the loss
(= optimization)

The parametric model

1

2

3

loss

Break

2. Advanced Neural Network
Architectures

Advanced neural network architectures

1. Convolutional Neural Network (CNN)

= 'the NN solution to space'

2. Recurrent Neural Network (RNN)

= 'the NN solution to time/sequence'

Convolutional Neural Network (CNN)

Problem:
For high-dimensional input (e.g. images) fully connected layers have way too many
parameters/connections.

Convolutional Neural Network (CNN)

Problem:
For high-dimensional input (e.g. images) fully connected layers have way too many
parameters/connections.

Solution:
Convolutions. Useful for data with grid-like structure, especially 2D/3D (computer
vision), where subpatterns re-appear throughout the grid.

Underlying ideas:

1. Local connectivity: connect input only locally through small kernel
2. Parameter sharing: re-use (move) the kernel along the grid/image/video

Convolutional Neural Network (CNN)

input

output

kernel: move along the input

Convolutional Neural Network (CNN)

kernel: move along the input

- Besides that similar to fully connected: take linear combination with (kernel)
weights, then add non-linearity.

- But we preserve the grid (2D/3D) structure into the next layer.

input

output

Convolutional Neural Network (CNN)

Stacking layers = Hierarchy

Note: The higher-up in the hierarchy, the wider the 'receptive field' in the original image.

Convolutional Neural Network (CNN)

Visualizing the Hierarchy

Zeiler, Matthew D., and Rob Fergus. Visualizing and understanding convolutional networks. 2013.

Convolutional Neural Network (CNN)

Convolution (& Pooling) = effectively a very strong prior on a fully connected layer:

- remove many weights (force to 0)
- tie the values of some others (parameter sharing)

Convolutional Neural Network (CNN)

Convolution (& Pooling) = effectively a very strong prior on a fully connected layer:

- remove many weights (force to 0)
- tie the values of some others (parameter sharing)

Q: Can you think of an example in which convolution would not work?

Convolutional Neural Network (CNN)

Convolution (& Pooling) = effectively a very strong prior on a fully connected layer:

- remove many weights (force to 0)
- tie the values of some others (parameter sharing)

Q: Can you think of an example in which convolution would not work?

A: When there is no spatio-temporal (i.e. grid-like) structure in the data.
For example, if x contains patient information (age, gender, medication, etc.), then it
does not make sense to move a window along it (there is no repeating structure).

Recurrent Neural Network (RNN)

For sequential/temporal data
(text, video, audio, most real-world data is a sequence/stream)

Recurrent Neural Network (RNN)

For sequential/temporal data
(text, video, audio, most real-world data is a sequence/stream)

Feed information of
previous step into next

timestep

Recurrent Neural Network (RNN)

For sequential/temporal data
(text, video, audio, most real-world data is a sequence/stream)

Feed information of
previous step into next

timestep

Rolled out graph over
time

RNN Training

Key idea:

- Recurrent connection between timesteps at the hidden level
- Parameter sharing (again): the recurrent parameters are the same at every

timestep.

RNN Training

Key idea:

- Recurrent connection between timesteps at the hidden level
- Parameter sharing (again): the recurrent parameters are the same at every

timestep.

But: How to train it?

RNN Training

Key idea:

- Recurrent connection between timesteps at the hidden level
- Parameter sharing (again): the recurrent parameters are the same at every

timestep.

But: How to train it?

Backpropagation Through Time (BPPT)
Feed in the entire sequence - backpropagate loss through the recurrency
(until the beginning)

RNN architecture variants

(e.g. translation)(e.g action
classification)

feedforward

network

3. Deep Learning

Deep Learning

White box = hand designed

Grey box = learned

'End-to-end learning'

Deep Learning

“We have never seen machine learning or artificial intelligence technologies so
quickly make an impact in industry.”

 -- Kai Yu, Baidu

Deep learning =
stacking many neural network layers & training them end-to-end

(i.e. already discussed)

I. Illustration: Computer Vision

 ILSVRC (ImageNet Large-Scale Visual Recognition Challenge)

ImageNet dataset: 1.2 million pictures over 1000 classes.

(x → y)

I. Illustration: Computer Vision

 ILSVRC (ImageNet Large-Scale Visual Recognition Challenge)

Year Model name Error rate Details

Before
2012

25.7%

I. Illustration: Computer Vision

 ILSVRC (ImageNet Large-Scale Visual Recognition Challenge)

Year Model name Error rate Details

Before
2012

25.7%

2012 AlexNet 15.4% 7 layers, GPU's, Relu activation

I. Illustration: Computer Vision

 ILSVRC (ImageNet Large-Scale Visual Recognition Challenge)

Year Model name Error rate Details

Before
2012

25.7%

2012 AlexNet 15.4% 7 layers, GPU's, Relu activation

2013 ZF Net 11.2% Visualization by deconvolution

2014 VGG Net 7.3% Deep (19 layers)

2015 GoogleNet 6.7% Very deep (100 layers), Inception module

2015 ResNet 3.4% Residual connections

I. Illustration: Computer Vision

 ILSVRC (ImageNet Large-Scale Visual Recognition Challenge)

Year Model name Error rate Details

Before
2012

25.7%

2012 AlexNet 15.4% 7 layers, GPU's, Relu activation

2013 ZF Net 11.2% Visualization by deconvolution

2014 VGG Net 7.3% Deep (19 layers)

2015 GoogleNet 6.7% Very deep (100 layers), Inception module

2015 ResNet 3.4% Residual connections

Human 5~10%

II. History of Neural Networks

II. History of Neural Networks

III. The Benefit of Depth

Depth is beneficial beyond just giving more parameters

IV. Combining Layers

Karpathy A. Fei-Fei L. Deep Visual-Semantic Alignments for Generating Image Descriptions. 2015.

CNN
+

RNN

IV. Combining Layers

Karpathy A. Fei-Fei L. Deep Visual-Semantic Alignments for Generating Image Descriptions. 2015.

CNN
+

RNN

V. Deep Learning Research

Autoencoders Neural Turing MachinesAdversarial Training

Deep Generative Models Deep Reinforcement Learning

VI. The other pillars of deep learning
(Apart from the algorithms/math discussed in this lecture)

VI. The other pillars of deep learning
(Apart from the algorithms/math discussed in this lecture)

1. Data 2. Computation

3. Software

Reading Material

1. Lecture Notes

2. Deep learning book (Free PDF: http://www.deeplearningbook.org/)

Read:

Fully connected layers: 6.0-6.1, 6.3

Loss functions: 6.2

Numerical Optimization: 4.0-4.3, 5.9, 6.5.1-4, 8.1-8.1.1

CNN: 9.0-9.4

RNN: 10.0,10.1,10.2.0,10.2.2

Deep learning: 1.0 (+ figure 1.5)

