Artificial Neural Networks 3:

Deep Learning

Course: Computational Intelligence (TI2736-A) Lecturer: Thomas Moerland

= Function approximation

Today: focus on *parametric*, supervised learning $y = f(x; \theta)$

= Function approximation

Today: focus on *parametric*, supervised learning $y = f(x; \theta)$

Content for today

- 1. The Feedforward Network
 - a. Artificial Neural Network (ANN): A Parametric Model
 - b. Loss Functions
 - c. Numerical Optimization

- 2. Advanced Neural Network Architectures
 - a. Convolutional Neural Network (CNN)
 - b. Recurrent Neural Network (RNN)
- 3. Deep learning

1. The Feedforward Network

ANN: A Parametric Model

Artificial Neural Network (ANN)

=

stacked sequence of non-linear regressions ("fully connected layers")

per layer:

$$\mathbf{h}^{(1)} = f^{(1)}(\mathbf{x}|\theta) = g^{(1)}(\mathbf{W}^{(1)}\mathbf{x} + b^{(1)})$$

Q: Why not stack multiple linear layers?A: Composition of linear transformations is still linear.

Q: Why not stack multiple linear layers?A: Composition of linear transformations is still linear.

Activation function = non-linear transformation

1. Rectifier linear unit (ReLu):	$g(z) = \begin{cases} 0, & \text{if } z < 0\\ z, & \text{if } z > 0 \end{cases}$
 Rectifier linear unit (ReLu): Exponential linear unit (ELU): Sigmoid: 	$g(z) = \begin{cases} e^{z} - 1, & \text{if } z < 0 \\ z, & \text{if } z > 0 \end{cases}$
3. Sigmoid:	$g(z) = \frac{1}{1+e^{-z}}$
4. Hyperbolic tangent (Tanh):	$g(z) = \tanh(z)$

1980-2010 : Sigmoid & Tanh. Problems: saturate (both sides) & hard to copy input
2010-now : ReLu & ELU (Partially linear functions): gradient flows more easily

ANN: Layer Stacking

Idea:

Repeatedly apply the input to such a parametrized layer

$$\hat{y} = f^{(2)}(f^{(1)}(\mathbf{x}))$$

ANN: Layer Stacking

<u>Idea</u>:

Repeatedly apply the input to such a parametrized layer

$$\hat{y} = f^{(2)}(f^{(1)}(\mathbf{x}))$$

or, when fully written out

$$\hat{y} = f_{\theta}(\mathbf{x}) = \mathbf{W}^{(2)}g^{(1)}(\mathbf{W}^{(1)}\mathbf{x} + \mathbf{b}^{(1)}) + \mathbf{b}^{(2)}$$

Note: In the last layer we do **not** apply a standard non-linearity g(). More about this in the loss function part.

General idea:

- 1. Specify error measure between \hat{y} (prediction) and y (true data target)
- 2. Minimize that quantity over the entire dataset

General idea:

- 1. Specify error measure between \hat{y} (prediction) and y (true data target)
- 2. Minimize that quantity over the entire dataset

Two important considerations:

- 1. Type of y variable (regression vs classification)
- 2. Deterministic versus probabilistic loss

1. Regression versus classification (= type of target variable (y))

1. Regression versus classification (= type of target variable (y))

Target type (y)	Name	Prediction	Network output
Continuous	Regression	Number on real line	Direct prediction (1 head) or parameters of contin prob. distr.
Discrete	Classification	Class label out of a set	Usually one network head per class

1. Regression versus classification (= type of target variable (y))

Target type (y)	Name	Prediction	Network output
Continuous	Regression	Number on real line	Direct prediction (1 head) or parameters of contin prob. distr.
Discrete	Classification	Class label out of a set	Usually one network head per class

Cardinal example: Regression on Mean-Squared Error (MSE)

$$\mathcal{L}(\theta|y,\mathbf{x}) = \mathbb{E}_{\mathcal{D}}\left[\left(f(\mathbf{x};\theta) - y\right)^2\right] = \frac{1}{N}\sum_{i=1}^N \left(f(\mathbf{x}_i;\theta) - y_i\right)^2$$

1. Regression versus classification (= type of target variable (y))

Target type (y)	Name	Prediction	Network output
Continuous	Regression	Number on real line	Direct prediction (1 head) or parameters of contin prob. distr.
Discrete	Classification	Class label out of a set	Usually one network head per class

Cardinal example: Regression on Mean-Squared Error (MSE)

$$\mathcal{L}(\theta|y, \mathbf{x}) = \mathbb{E}_{\mathcal{D}} \left[\left(f(\mathbf{x}; \theta) - y \right)^2 \right] = \frac{1}{N} \sum_{i=1}^N \left(f(\mathbf{x}_i; \theta) - y_i \right)^2$$

sum over f prediction true label
whole dataset

square the

1. Regression versus classification (= type of target variable (y))

Target type (y)	Name	Prediction	Network output
Continuous	Regression	Number on real line	Direct prediction (1 head) or parameters of contin prob. distr.
Discrete	Classification	Class label out of a set	Usually one network head per class

Cardinal example: Regression on Mean-Squared Error (MSE)

$$\mathcal{L}(\theta|y,\mathbf{x}) = \mathbb{E}_{\mathcal{D}}\left[\left(f(\mathbf{x};\theta) - y\right)^{2}\right] = \frac{1}{N} \sum_{i=1}^{N} \left(f(\mathbf{x}_{i};\theta) - y_{i}\right)^{2}$$
f the error?
$$sum over \neq prediction true label$$

whole dataset

square the

-

Q: why the square of the error?

1. Regression versus classification (= type of target variable (y))

Target type (y)	Name	Prediction	Network output
Continuous	Regression	Number on real line	Direct prediction (1 head) or parameters of contin prob. distr.
Discrete	Classification	Class label out of a set	Usually one network head per class

Cardinal example: Regression on Mean-Squared Error (MSE)

$$\mathcal{L}(\theta|y,\mathbf{x}) = \mathbb{E}_{\mathcal{D}}\left[\left(f(\mathbf{x};\theta) - y\right)^2\right] = \frac{1}{N}\sum_{i=1}^N \left(f(\mathbf{x}_i;\theta) - y_i\right)^2$$

Q: why the square of the error?

A: penalize positive **and** negative errors + easier derivative (compared to absolute error)

sum over prediction true label whole dataset

2. Deterministic versus probabilistic loss

<u>Main idea of probabilistic loss</u>: The network predicts the *parameters of a probability distribution* out of which the observed y would be sampled, instead of predicting y directly.

2. Deterministic versus probabilistic loss

<u>Main idea of probabilistic loss</u>: The network predicts the *parameters of a probability distribution* out of which the observed y would be sampled, instead of predicting y directly.

For example:

ŷ ~ N(.|μ,σ) and

2. Deterministic versus probabilistic loss

<u>Main idea of probabilistic loss</u>: The network predicts the *parameters of a probability distribution* out of which the observed y would be sampled, instead of predicting y directly.

Benefits:

- 1. Model stochastic output & sensor noise
- 2. Directly have a loss function:

'Maximum likelihood estimation' =	learn a model that gives maximum probability to
	the observed data

See lecture notes for details (also for classification case)

C. Numerical optimization

Gradient Descent

C. Numerical optimization

Gradient Descent

Non-Convex Objective Function

NN objective/cost

Non-convex

=

Learning rate = crucial Too small : no progress Too large : unstable
Importance of learning rate

Gradient Descent for Neural Networks

Two issues around the same problem:

How do we get the gradients in feasible computational time?

1. Datasets are usually large:

Solution: stochastic gradient descent (SGD)

2. Networks are usually large:

<u>Solution</u>: backpropagation ('backprop')

Stochastic Gradient Descent

True gradient is a sum over the entire dataset:

$$\nabla_{\theta} \mathcal{L}(\theta | y, \mathbf{x}) = \sum_{i=1}^{N} \nabla_{\theta} \left(f(\mathbf{x}_{i}; \theta) - y_{i} \right)^{2}$$

Dataset size (N) may be millions.

Stochastic Gradient Descent

True gradient is a sum over the entire dataset:

$$\nabla_{\theta} \mathcal{L}(\theta | y, \mathbf{x}) = \sum_{i=1}^{N} \nabla_{\theta} \left(f(\mathbf{x}_{i}; \theta) - y_{i} \right)^{2}$$

Dataset size (N) may be millions.

Solution: approximate the gradient with a sample from the dataset (= a 'minibatch' per parameter update)

$$\mathbf{grad} = \sum_{i=1}^{m} \nabla_{\theta} \left(f(\mathbf{x_i}; \theta) - y_i \right)^2$$

Minibatch size (usually m=32 or m=64) stays fixed when dataset grows!

First: How do we get the gradient anyway?

First: How do we get the gradient anyway?

Required: Chain Rule of Calculus

Example:

How do we get dh/dx?

First: How do we get the gradient anyway?

Required: Chain Rule of Calculus

Example:

How do we get dh/dx?

$$\frac{dh}{dx} = \frac{dh}{dz}\frac{dz}{dx}$$

chain = multiply the gradients of the subfunctions

(generalizes to case where **x**,**z** and **h** are vectors - need <u>partial derivatives</u> (see lecture notes))

Q: To update weight w_1 we need dL/d w_1 . Give dL/d w_1 (symbolic).

Q: To update weight w_1 we need dL/d w_1 . Give dL/d w_1 (symbolic).

A: $\frac{\partial \mathcal{L}}{\partial w_1} = \frac{\partial \mathcal{L}}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial h} \frac{\partial h}{\partial w_1}$

Q: To update weight w_1 we need dL/d w_1 . Give dL/d w_1 (symbolic).

A:
$$\frac{\partial \mathcal{L}}{\partial w_1} = \frac{\partial \mathcal{L}}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial h} \frac{\partial h}{\partial w_1}$$

Q: Can you further write out dh/dw₁? (think about the non-linearity)

- **Q:** To update weight w_1 we need dL/d w_1 . Give dL/d w_1 (symbolic).
- $\overset{\mathbf{A:}}{\frac{\partial \mathcal{L}}{\partial w_1}} = \frac{\partial \mathcal{L}}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial h} \frac{\partial h}{\partial w_1}$
- **Q:** Can you further write out dh/dw₁? (think about the non-linearity)

$$z = w_1 x + b_1$$
 and $h = g(z)$

∂h		∂h	∂z
$\overline{\partial w_1}$	_	$\overline{\partial z}$	$\overline{\partial w_1}$

Q: Now our input **x** is actually a vector of length 2. Can you give dL/dw_1 and dL/dw_2 ?

Q: Now our input **x** is actually a vector of length 2. Can you give dL/dw_1 and dL/dw_2 ?

A:	$\frac{\partial \mathcal{L}}{\partial w_1} =$	$= \frac{\partial \mathcal{L}}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial h} \frac{\partial h}{\partial w_1}$
	$\frac{\partial \mathcal{L}}{\partial w_2} =$	$=rac{\partial \mathcal{L}}{\partial \hat{y}}rac{\partial \hat{y}}{\partial h}rac{\partial \hat{y}}{\partial w_2}$

A:

Q: Now our input **x** is actually a vector of length 2. Can you give dL/dw_1 and dL/dw_2 ?

$$\frac{\partial \mathcal{L}}{\partial w_1} = \frac{\partial \mathcal{L}}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial h} \frac{\partial h}{\partial w_1}$$
$$\frac{\partial \mathcal{L}}{\partial w_2} = \frac{\partial \mathcal{L}}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial h} \frac{\partial h}{\partial w_2}$$

large part of the gradient is the same (= key idea of backpropagation)

<u>Main idea:</u>

- Efficiently store gradients and re-use them by **walking backwards** through the network.

Main idea:

- Efficiently store gradients and re-use them by **walking backwards** through the network.

Backpropagation algorithm $\mathbf{grad} = \nabla_{\hat{y}} \mathcal{L}$ for d in $l1$:	differentiate the loss w.r.t. the network prediction
$\mathbf{grad} \leftarrow abla_{\mathbf{z}^{(d)}} \mathcal{L} = \mathbf{grad} \odot rac{dg^{(d)}}{dz^{(d)}_i}$	propagate through non-linearity
$ abla_{\mathbf{b}^{(d)}}\mathcal{L} = \mathbf{grad}$	gradients for biases in layer d
$ abla_{\mathbf{W}^{(d)}}\mathcal{L} = \mathbf{grad}\cdot\mathbf{h}^{(d-1)}$	gradients for weights in layer d
$\mathbf{grad} \leftarrow abla_{\mathbf{h}^{(d-1)}} \mathcal{L} = \mathbf{grad} \cdot \mathbf{W}^{(d)}$	propagate gradients to hidden units of next layer $d-1$

Let's assume some data and initialize parameters:

$$x_1 = 2$$
 $w_1 = 1.5$ $b_1 = 3$
 $x_2 = -1$ $w_2 = 2$ $b_2 = -2$
 $y = 6$ $w_3 = 2.5$ $g(z) = \text{ReLu} = \max(0, z)$

$$x_1 = 2$$
 $w_1 = 1.5$ $b_1 = 3$ $z = 4$ $x_2 = -1$ $w_2 = 2$ $b_2 = -2$ $h = 4$ $y = 6$ $w_3 = 2.5$ $g(z) = \text{ReLu}$ $\hat{y} = 8$

Q: We assume the squared loss $L = (\hat{y} - y)^2$. Compute the loss for this datapoint.

$$x_1 = 2$$
 $w_1 = 1.5$ $b_1 = 3$ $z = 4$ $x_2 = -1$ $w_2 = 2$ $b_2 = -2$ $h = 4$ $y = 6$ $w_3 = 2.5$ $g(z) = \text{ReLu}$ $\hat{y} = 8$

Q: We assume the squared loss $L = (\hat{y} - y)^2$. Compute the loss for this datapoint.

A: $L = (8 - 6)^2 = 4$

$$x_1 = 2$$
 $w_1 = 1.5$ $b_1 = 3$ $z = 4$ $x_2 = -1$ $w_2 = 2$ $b_2 = -2$ $h = 4$ $y = 6$ $w_3 = 2.5$ $g(z) = \text{ReLu}$ $\hat{y} = 8$

Q: Let backpropagate. Calculate dL/dw₃.

$$x_1 = 2$$
 $w_1 = 1.5$ $b_1 = 3$ $z = 4$ $x_2 = -1$ $w_2 = 2$ $b_2 = -2$ $h = 4$ $y = 6$ $w_3 = 2.5$ $g(z) = \text{ReLu}$ $\hat{y} = 8$

Q: Let backpropagate. Calculate dL/dw₃.

A:
$$\frac{\partial \mathcal{L}}{\partial w_3} = \frac{\partial \mathcal{L}}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w_3}$$

 $= \frac{\partial}{\partial \hat{y}} (\hat{y} - y)^2 \frac{\partial}{\partial w_3} (w_3 h + b_2)$
 $= 2(\hat{y} - y) \cdot h$
 $= 2(8 - 6) \cdot 4 = 16$

$$x_1 = 2$$
 $w_1 = 1.5$ $b_1 = 3$ $z = 4$ $x_2 = -1$ $w_2 = 2$ $b_2 = -2$ $h = 4$ $y = 6$ $w_3 = 2.5$ $g(z) = \text{ReLu}$ $\hat{y} = 8$

Q: Now for dL/dw_1 and dL/db_1

$$x_1 = 2$$
 $w_1 = 1.5$ $b_1 = 3$ $z = 4$ $x_2 = -1$ $w_2 = 2$ $b_2 = -2$ $h = 4$ $y = 6$ $w_3 = 2.5$ $g(z) = \text{ReLu}$ $\hat{y} = 8$

Q: Now for dL/dw_1 and dL/db_1

A:
$$\frac{\partial \mathcal{L}}{\partial h} = \frac{\partial \mathcal{L}}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial h}$$
 First through the top layer

$$= \frac{\partial}{\partial \hat{y}} (\hat{y} - y)^2 \frac{\partial}{\partial h} (w_3 h + b_2)$$

$$= 2(\hat{y} - y) \cdot w_3$$

$$= 2(8 - 6) \cdot 2.5 = 10$$

$$x_1 = 2$$
 $w_1 = 1.5$ $b_1 = 3$ $z = 4$ $x_2 = -1$ $w_2 = 2$ $b_2 = -2$ $h = 4$ $y = 6$ $w_3 = 2.5$ $g(z) = \text{ReLu}$ $\hat{y} = 8$

Q: Now for dL/dw_1 and dL/db_1

A:
$$\frac{\partial \mathcal{L}}{\partial w_1} = \frac{\partial \mathcal{L}}{\partial h} \frac{\partial h}{\partial z} \frac{\partial z}{\partial w_1}$$

= $10 \cdot \frac{\partial}{\partial z} \max(0, z) \frac{\partial}{\partial w_1} (w_1 x_1 + w_2 x_2 + b_1)$
= $10 \cdot 1 \cdot x_1$
= $10 \cdot 2 = 20$

$$\begin{array}{l} = 2 & w_1 = 1.5 & b_1 = 3 & z = 4 \\ = -1 & w_2 = 2 & b_2 = -2 & h = 4 \\ = 6 & w_3 = 2.5 & g(z) = \text{ReLu} \quad \hat{y} = 8 \end{array}$$

Q: Now for dL/dw_1 and dL/db_1

Re-use previous gradient $= 10 \cdot \frac{\partial}{\partial b_1} (w_1 x_1 + w_2 x_2 + b_1)$ $=10 \cdot 1 = 10$

$$x_1 = 2$$
 $w_1 = 1.5$ $b_1 = 3$ $z = 4$ $x_2 = -1$ $w_2 = 2$ $b_2 = -2$ $h = 4$ $y = 6$ $w_3 = 2.5$ $g(z) = \text{ReLu}$ $\hat{y} = 8$

Q: So $dL/dw_3 = 16$, $dL/dw_1 = 20$ and $dL/db_1 = 10$. Update parameters, take learning rate 0.01.

$$x_1 = 2$$
 $w_1 = 1.5$ $b_1 = 3$ $z = 4$ $x_2 = -1$ $w_2 = 2$ $b_2 = -2$ $h = 4$ $y = 6$ $w_3 = 2.5$ $g(z) = \text{ReLu}$ $\hat{y} = 8$

Q: So $dL/dw_3 = 16$, $dL/dw_1 = 20$ and $dL/db_1 = 10$. Update parameters, take learning rate 0.01.

A:
$$w_1 = 1.5 - 0.01^*20 = 1.3$$

 $b_1 = 3 - 0.01^*10 = 2.9$
 $w_3 = 2.5 - 0.01^*16 = 2.34$

(Note: normally we update all parameters, i.e. w_2 and b_2 as well)

$$x_1 = 2$$
 $w_1 = 1.3$ $b_1 = 2.9$ $z = 4$ $x_2 = -1$ $w_2 = 2$ $b_2 = -2$ $h = 4$ $y = 6$ $w_3 = 2.34$ $g(z) = \text{ReLu}$ $\hat{y} = 8$

Q: So we have update the parameters. Did our prediction get better?

$$x_1 = 2$$
 $w_1 = 1.3$ $b_1 = 2.9$ $z = 4$ $x_2 = -1$ $w_2 = 2$ $b_2 = -2$ $h = 4$ $y = 6$ $w_3 = 2.34$ $g(z) = \text{ReLu}$ $\hat{y} = 6.19$

Q: So we have update the parameters. Did our prediction get better?

A:
$$z = (2^*1.3) + (-1^*2) + 2.9 = 3.5$$

h = max(0,3.5) = 3.5

$$\hat{y} = (2.34^*3.5) - 2 = 6.19$$

<u>Yes, we got much closer!</u> (8 \rightarrow 6.19, while true y is 6)

Summary: You just manually trained a neural network (one learning loop)

Break

2. Advanced Neural Network Architectures

Advanced neural network architectures

1. Convolutional Neural Network (CNN)

= 'the NN solution to space'

2. Recurrent Neural Network (RNN)

= 'the NN solution to *time*/sequence'

Convolutional Neural Network (CNN)

Problem:

For high-dimensional input (e.g. images) fully connected layers have way too many parameters/connections.
Problem:

For high-dimensional input (e.g. images) fully connected layers have way too many parameters/connections.

Solution:

Convolutions. Useful for data with grid-like structure, especially 2D/3D (computer vision), where subpatterns re-appear throughout the grid.

Underlying ideas:

- 1. Local connectivity: connect input only locally through small kernel
- 2. *Parameter sharing*: re-use (move) the kernel along the grid/image/video

- Besides that similar to fully connected: take **linear combination with (kernel)** weights, then add **non-linearity**.
- But we **preserve the grid (2D/3D) structure** into the next layer.

Stacking layers = **Hierarchy**

Note: The higher-up in the hierarchy, the wider the 'receptive field' in the original image.

Visualizing the Hierarchy

Zeiler, Matthew D., and Rob Fergus. Visualizing and understanding convolutional networks. 2013.

Convolution (& Pooling) = **effectively a very strong prior** on a fully connected layer:

- remove many weights (force to 0)
- tie the values of some others (parameter sharing)

Convolution (& Pooling) = **effectively a very strong prior** on a fully connected layer:

- remove many weights (force to 0)
- tie the values of some others (parameter sharing)

Q: Can you think of an example in which convolution would **not** work?

Convolution (& Pooling) = **effectively a very strong prior** on a fully connected layer:

- remove many weights (force to 0)
- tie the values of some others (parameter sharing)

Q: Can you think of an example in which convolution would **not** work?

A: When there is no spatio-temporal (i.e. grid-like) structure in the data. For example, if **x** contains patient information (age, gender, medication, etc.), then it does not make sense to move a window along it (there is no repeating structure).

Recurrent Neural Network (RNN)

For sequential/temporal data (text, video, audio, most real-world data is a sequence/stream)

Recurrent Neural Network (RNN)

For sequential/temporal data

(text, video, audio, most real-world data is a sequence/stream)

Recurrent Neural Network (RNN)

For sequential/temporal data

(text, video, audio, most real-world data is a sequence/stream)

RNN Training

Key idea:

- Recurrent connection between timesteps at the hidden level
- **Parameter sharing** (again): the recurrent parameters are the same at every timestep.

RNN Training

Key idea:

- Recurrent connection between timesteps at the hidden level
- **Parameter sharing** (again): the recurrent parameters are the same at every timestep.

But: How to train it?

RNN Training

Key idea:

- Recurrent connection between timesteps at the hidden level
- **Parameter sharing** (again): the recurrent parameters are the same at every timestep.

But: How to train it?

Backpropagation Through Time (BPPT)

Feed in the entire sequence - backpropagate loss through the recurrency (until the beginning)

RNN architecture variants

network

classification)

3. Deep Learning

Deep Learning

White box	=	hand designed
Grey box	=	learned

'End-to-end learning'

Deep Learning

"We have never seen machine learning or artificial intelligence technologies so quickly make an impact in industry."

-- Kai Yu, Baidu

Deep learning =

stacking many neural network layers & training them end-to-end

(i.e. already discussed)

ILSVRC (ImageNet Large-Scale Visual Recognition Challenge)

ImageNet dataset: 1.2 million pictures over 1000 classes.

 $(x \rightarrow y)$

ILSVRC (ImageNet Large-Scale Visual Recognition Challenge)

Year	Model name	Error rate	Details
Before 2012		25.7%	

ILSVRC (ImageNet Large-Scale Visual Recognition Challenge)

Year	Model name	Error rate	Details
Before 2012		25.7%	
2012	AlexNet	15.4%	7 layers, GPU's, Relu activation

ILSVRC (ImageNet Large-Scale Visual Recognition Challenge)

Year	Model name	Error rate	Details
Before 2012		25.7%	
2012	AlexNet	15.4%	7 layers, GPU's, Relu activation
2013	ZF Net	11.2%	Visualization by deconvolution
2014	VGG Net	7.3%	Deep (19 layers)
2015	GoogleNet	6.7%	Very deep (100 layers), Inception module
2015	ResNet	3.4%	Residual connections

ILSVRC (ImageNet Large-Scale Visual Recognition Challenge)

Year	Model name	Error rate	Details
Before 2012		25.7%	
2012	AlexNet	15.4%	7 layers, GPU's, Relu activation
2013	ZF Net	11.2%	Visualization by deconvolution
2014	VGG Net	7.3%	Deep (19 layers)
2015	GoogleNet	6.7%	Very deep (100 layers), Inception module
2015	ResNet	3.4%	Residual connections

Human

5~10%

II. History of Neural Networks

II. History of Neural Networks

III. The Benefit of Depth

Depth is beneficial beyond just giving more parameters

IV. Combining Layers

IV. Combining Layers

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background

A little girl sitting on a bed with a teddy bear.

A group of people sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

V. Deep Learning Research

Neural Turing Machines

Deep Generative Models

Deep Reinforcement Learning

VI. The other pillars of deep learning

(Apart from the algorithms/math discussed in this lecture)

VI. The other pillars of deep learning

(Apart from the algorithms/math discussed in this lecture)

2. Computation

3. Software

Reading Material

1. Lecture Notes

2. Deep learning book (Free PDF: http://www.deeplearningbook.org/)

Read:

Fully connected layers:	6.0-6.1, 6.3
Loss functions:	6.2
Numerical Optimization:	4.0-4.3, 5.9, 6.5.1-4, 8.1-8.1.1
CNN:	9.0-9.4
RNN:	10.0,10.1,10.2.0,10.2.2
Deep learning:	1.0 (+ figure 1.5)

