Artificial Neural Networks 3:

Deep Learning

Course: Computational Intelligence (T12736-A)

Lecturer:; Thomas Moerland

]
TUDelft

Recap: Machine Learning

= Function approximation

Today: focus on parametric, supervised learning
y = f(x;6)

Recap: Machine Learning

= Function approximation

Today: focus on parametric, supervised learning

y = f(x;0)
o
= o]
o
o o ° o__gw0loe-paef-—-
=] T o o ©0
-— o o &)
a Od‘ﬂo o
w o0” o o
.
> © 4 i
/0
P
g
b

g
o = !

!
> 4

T T T T T T

0 10 20 30 40 50

Recap: Machine Learning

@ target
parameters

@ input

Recap: Machine Learning

@ target
Value tolearn arameters Values given
P by the data

@ input

Recap: Machine Learning

G loss
model
prediction target

parameters
@ input

Recap: Machine Learning

G loss
a target

The parametric model

®

©
Q)
=S
Q)
3
D
Py
(@)
-
——U’—

Recap: Machine Learning

i model
| Prediction

The parametric model

®

§®)
Q)
=S
Q)
3
@)
‘—'-
(@)
)

—U’
5_-----

©
c
f_'-

Recap: Machine Learning

Goal = tunethe
parameters®to - i —
minimize the loss - |
(= optimization) i |

@ . | Prediction
- |

model

The parametric model

®

e
QD . .
—_n
ml
3.
D
P
@,
=
——U’.—
G E—— E—— - - S S S S S

©
c
f_'-

Content for today

1. The Feedforward Network
a. Artificial Neural Network (ANN): A Parametric Model

b. Loss Functions

c. Numerical Optimization

2. Advanced Neural Network Architectures
a. Convolutional Neural Network (CNN)
b. Recurrent Neural Network (RNN)

3. Deep learning

LR

1. The Feedforward Network

ANN: A Parametric Model

prediction

Artificial Neural Network (ANN)

stacked sequence of non-linear
regressions

("fully connected layers")

Artificial Neural Network structure

prediction

per layer:

h = fW(x|6) = gV (WDx 4 p()

Artificial Neural Network structure

prediction

per layer:

layer number Input

(vector)

h(lé f(l)(x|9) _ g(l)(w(l)x'_i_/b(l))

\ NN

output non-linear , bias
(vector) function weight (vector)
(element-wise (matrix)
to vector)

Artificial Neural Network structure

prediction

per layer:

layer number Input

(vector)

h(lf/: £ (x]9) = g(l)(wu)xﬁﬁ(l))

\ N ™
output non-linear

(vector) function
(element-wise) ~ (matrix)

bias
weight (vector)

Q: How many parameters does this
network have?

Artificial Neural Network structure

prediction

per layer:

layer number Input

(vector

)
h(lf/: FM(x160) = ¢ (WX +pM)

\ NN
output non-linear

(vector) function
(element-wise) ~ (matrix)

bias
weight (vector)

Q: How many parameters does this
network have?

A:13
First layer: 6 weights + 3 biases

Second layer: 3 weights + 1 bias

Activation Functions

Q: Why not stack multiple linear layers?

A: Composition of linear transformations is still linear.

Activation Functions

Q: Why not stack multiple linear layers?

A: Composition of linear transformations is still linear.

Activation function = non-linear transformation

‘ ‘ ‘ 0, it 2 <0
1. Rectifier linear unit (ReLu): g(z) = _
2 ifz2>0
o . e*—1, iftz<0
2. Exponential linear unit (ELU): ¢(z) = _
8 ifz>0
1
3. Si id: =
igmoi g(z) T
4. Hyperbolic tangent (Tanh): g(z) = tanh(z)

Activation Functions

3.0

25}

20}

1.5

9(z)

0.5}

1.0F

Activation Fuctions

=== Relu

== FELU

== Sigmoid
- Tanh

Activation Functions

Activation Fuctions

3.0]
=== Relu
25 — [r—— ELU
5> ol| == Sigmoid
=== Tanh

1.5

1.0F

9(z)

0.5}

1980-2010 : Sigmoid & Tanh. Problems: saturate (both sides) & hard to copy input

2010-now : ReLu & ELU (Partially linear functions): gradient flows more easily
.

ANN: Layer Stacking

prediction

ldea:

Repeatedly apply the input to such a
parametrized layer

9= 1O)

ANN: Layer Stacking

prediction

Idea:

Repeatedly apply the input to such a
parametrized layer

9= 1O)

or, when fully written out

§= fo(x) = WG WDx 4 pM) 4 p3

Note: In the last layer we do not apply
a standard non-linearity g(). More
about this in the loss function part.

B. Loss function

General idea:
1. Specify error measure between y (prediction) and y (true data target)

2. Minimize that quantity over the entire dataset

B. Loss function

General idea:
1. Specify error measure between y (prediction) and y (true data target)

2. Minimize that quantity over the entire dataset

Two important considerations:
1. Type of y variable (regression vs classification)

2. Deterministic versus probabilistic loss

B. Loss function

1. Regression versus classification (= type of target variable (y))

B. Loss function

1. Regression versus classification (= type of target variable (y))

Target type (y) Name Prediction Network output

Continuous Regression Number onreal line Direct prediction (1 head) or
parameters of contin prob. distr.

Discrete Classification Class label out of aset | Usually one network head per class

B. Loss function

1. Regression versus classification (= type of target variable (y))

Target type (y) Name Prediction Network output

Continuous Regression Number onreal line Direct prediction (1 head) or
parameters of contin prob. distr.

Discrete Classification Class label out of aset | Usually one network head per class

Cardinal example: Regression on Mean-Squared Error (MSE)

1

L0y, x) = Ep [(f(x; 0) — y)2] - < i (f(Xi;H) B y@-)z

¥

B. Loss function

1. Regression versus classification (= type of target variable (y))

Target type (y) Name Prediction Network output
Continuous Regression Number onreal line Direct prediction (1 head) or
parameters of contin prob. distr.
Discrete Classification Class label out of aset | Usually one network head per class
Cardinal example: Regression on Mean-Squared Error (MSE) square the

L0y, x) = Ep [(f(x; 0) — y)2] _ %i (f(f’;z';@) B yi)z

¥

error

sum over f prediction truelabel

whole dataset

B. Loss function

1. Regression versus classification (= type of target variable (y))

Target type (y) Name Prediction Network output

Continuous Regression Number onreal line Direct prediction (1 head) or
parameters of contin prob. distr.

Discrete Classification Class label out of aset | Usually one network head per class

Cardinal example: Regression on Mean-Squared Error (MSE) square the
1 error

L0y, x) = Ep [(f(x; 0) — y)2] - < i (f(f’;z';@) B yi)z

¥

Q: why the square of the error? sumover f prediction true label
whole dataset

B. Loss function

1. Regression versus classification (= type of target variable (y))

Target type (y) Name Prediction Network output
Continuous Regression Number onreal line Direct prediction (1 head) or
parameters of contin prob. distr.
Discrete Classification Class label out of aset | Usually one network head per class
Cardinal example: Regression on Mean-Squared Error (MSE) square the

L0y, x) = Ep [(f(x; 0) — y)2] _ %i (f(f’;z';@) B yi)z

¥

Q: why the square of the error?

A: penalize positive and negative errors +
easier derivative (compared to absolute error)

whole dataset

error

sum over f prediction truelabel

B. Loss function

2. Deterministic versus probabilistic loss

Main idea of probabilistic loss: The network predicts the parameters of a probability
distribution out of which the observed y would be sampled, instead of predicting y directly.

B. Loss function

2. Deterministic versus probabilistic loss

Main idea of probabilistic loss: The network predicts the parameters of a probability
distribution out of which the observed y would be sampled, instead of predicting y directly.

For example:

¥ ~ N(.|p,0) and

B. Loss function

2. Deterministic versus probabilistic loss

Main idea of probabilistic loss: The network predicts the parameters of a probability
distribution out of which the observed y would be sampled, instead of predicting y directly.

Benefits:

1. Model stochastic output & sensor noise
2. Directly have aloss function:

'Maximum likelihood estimation' = learn a model that gives maximum probability to
the observed data

See lecture notes for details (also for classification case)

C. Numerical optimization

Gradient Descent

L(B) initial ©

'/ gradient

1
/
/
]

C. Numerical optimization

Gradient Descent

L(B) initial ©

'/ gradient

1
/
/
]

Wﬂe:

0 =0 — aVeL(0)

|

Learning rate

Non-Convex Objective Function

NN objective/cost

Non-convex

Learning rate = crucial
Too small: no progress

Too large : unstable

Importance of learning rate

Gradient Descent for Neural Networks

Two issues around the same problem:

How do we get the gradients in feasible computational time?

1. Datasets are usually large:

Solution: stochastic gradient descent (SGD)

2. Networks are usually large:

Solution: backpropagation ('backprop’)

Stochastic Gradient Descent

True gradient is a sum over the entire dataset:

VoL (6]y, x) ng(Fxi: 0)2

Dataset size (N) may be millions.

Stochastic Gradient Descent

True gradient is a sum over the entire dataset:

VoL (6]y, x) ng(Fxi: 0)2

Dataset size (N) may be millions.

Solution: approximate the gradient with a sample from the dataset
(= a'minibatch' per parameter update)

grad = 3" Vo (£0x56) -)’
=1

Minibatch size (usually m=32 or m=64) stays fixed when dataset grows!

Backpropagation

First: How do we get the gradient anyway?

Backpropagation

First: How do we get the gradient anyway?

Required: Chain Rule of Calculus
Example:
z =f(x) h = g(z) --> h = g(f(x))
f() g()
How do we get dh/dx?

Backpropagation

First: How do we get the gradient anyway?

Required: Chain Rule of Calculus
Example:
z =f(x) h = g(z) --> h = g(f(x))
f() g()
How do we get dh/dx?
dh _ dh dz
dx dz dx

chain = multiply the gradients of the subfunctions

(generalizes to case where x,z and h are vectors - need partial derivatives (see lecture notes))

Class example: NN gradients

Q: Toupdate weight W, we need dL/dWl.
Give dL/dw, (symbolic).

h=g(w,x,+b,)

Class example: NN gradients

Q: Toupdate weight W, we need dL/dWl.
Give dL/dw, (symbolic).

A: 9L ILIY Oh
8w1 - 83) oh 8w1

Class example: NN gradients

Q: Toupdate weight W, we need dL/dWl.
Give dL/dw, (symbolic).

A: 9L ILIY Oh
8w1 - 83) oh 8w1

Q: Canyou further write out dh/dwl?
(think about the non-linearity)

Class example: NN gradients

Q: Toupdate weight W, we need dL/dWl.
Give dL/dw, (symbolic).

A: 9L ILIY Oh
8w1 - 83) oh 8w1

Q: Canyou further write out dh/dwl?
(think about the non-linearity)

z=wix+by and h=g(z)

O

dw, Dz dwy

Class example: NN gradients

Q: Now our input x is actually a vector of
length 2. Can you give dL/dw, and dL/dw.,?

Class example: NN gradients

Q: Now our input x is actually a vector of
length 2. Can you give dL/dw, and dL/dw.,?

A 9L ALy Oh
Bwl N 8’[3 oh Bwl
L Ly Oh
ng N 8@ oh 3w2

Class example: NN gradients

Q: Now our input x is actually a vector of
length 2. Can you give dL/dw, and dL/dw.,?

A L 9L 0y oh
ow; 107 8h:3w1
|
9L 1L 9y, Oh
dws 10 Oh 1w,
|

large part of the gradient is the same

(= key idea of backpropagation)

Backpropagation

Main idea:

- Efficiently store gradients and re-use them by walking backwards
through the network.

Backpropagation

Main idea:

- Efficiently store gradients and re-use them by walking backwards
through the network.

Backpropagation algorithm

grad = VL differentiate the loss w.r.t. the network prediction
for d in [..1:
grad <+ V, L =grad ® jz:j; propagate through non-linearity
j
Vi@ L = grad gradients for biases in layer d
b
Vw@ L = grad - h(d-1 gradients for weights in layer d

grad < V- L = grad - W@ propagate gradients to hidden units of next layer d — 1

Class example: One full learning loop

Let's assume some data and initialize parameters:
x,=2 w,=15 b,=3
X,=-1 w,=2 b2=-2

y=6 w,=25 g(z) = ReLu = max(0,z)

Class example: One full learning loop

Q: Compute y (forward pass)

X.+b,)

h = g(w,x,+w,x,+b,

Class example: One full learning loop

Q: Compute y (forward pass)

h = glw,x;+wW,x,+b,) A: z=(2*15)+(-1*2)+3 =4
h = max(0,4) =4
y=(25%4)-2 =8

Class example: One full learning loop

1=2 W1=15 b1=3 z=4
X,=-1 w,=2 b,=-2 h=4
y=6 W, = 2.5 g(z)=RelLu y=8

Q: We assume the squared loss L = (¥ - y)>.
Compute the loss for this datapoint.

Class example: One full learning loop

1=2 W1=15 b1=3 z=4
X,=-1 w,=2 b,=-2 h=4
y=6 W, = 2.5 g(z)=RelLu y=8

Q: We assume the squared loss L = (¥ - y)>.
Compute the loss for this datapoint.

A:L=(8-6)*=4

Class example: One full learning loop

Xx,=2 w,=15 b,=3 z=4
X,=-1 w,= b,=-2 h=4
y=6 w,=25 g(z)=ReLu y=8

Q: Let backpropagate. Calculate dL/dw,,.

Class example: One full learning loop

< N
1l I
(@)}
=
S =
N
Il 1l
N
(On
m d
t" 1l
Il N
P
D
—
c
<> o N
Il Il
0o N D

Q: Let backpropagate. Calculate dL/dw,,.

A 0L OL Iy
(9’&03 B (9?3 3’&03

—=2(8—6)-4=16

Class example: One full learning loop

Xx,=2 w,=15 b,=3 z=4
X,=-1 w,= b,=-2 h=4
y=6 w,=25 g(z)=ReLu y=8

Q: Now for dL/dW1 and dL/db1

h =g(w,x,+w,x,+b,)

272 "1

Class example: One full learning loop

Xx,=2 w,=15 b,=3 z=4
X,=-1 w,= b,=-2 h=4
y=6 w,=25 g(z)=ReLu y=8

Q: Now for dL/dW1 and dL/db1

A: 0C - oL 8:& First through the top layer
oh 0y Oh
— 8 ¥ 2 8
= 57 (0 =) 5 (wsh + bo)
=2(g—y) - ws

=2(8—16)-2.5=10

Class example: One full learning loop

1=2 W1=15 b1=3 z=4
x2—-1 W2=2 b2=-2 h=4
y=6 W, = 2.5 g(z)=RelLu y=8

Q: Now for dL/dW1 and dL/db1

A: 0L OLOh 0z
ow, Oh 0z Ow

0 0
=10 amax((),z)a—m(wlml + woxy + by)
=10-2=20

Class example: One full learning loop

Xx,=2 w,=15 b,=3 z=4
X,=-1 w,= b,=-2 h=4
y=6 w,=25 g(z)=ReLu y=8

Q: Now for dL/dW1 and dL/db1

r -
h= g(W1X1+W2X2+b1) A: 0L _1 oL !87; Re-use previous gradient
861 | 0z Pbl
] 0
::10 -:a—bl(wlxl + woxy + b1)
=10 :1 .
=110 -1 = 10

Class example: One full learning loop

1=2 W1=15 b1=3 z=4
X,=-1 w,=2 b,=-2 h=4
y=6 W, = 2.5 g(z)=RelLu y=8

Q: SodL/dw,=16, dL/dw,=20 and dL/db,=10.
Update parameters, take learning rate 0.01.

Class example: One full learning loop

1=2 W1=15 b1=3 z=4
x2—-1 W2=2 b2=-2 h=4
y=6 W, = 2.5 g(z)=RelLu y=8

Q: SodL/dw,=16, dL/dw,=20 and dL/db,=10.
Update parameters, take learning rate 0.01.

A: w, =15-001"20 =13
b, =3 -001"10 =29
w, =25-001"16 =234
(Note: normally we update all parameters, i.e.

w,and b, as well)

Class example: One full learning loop

=2 w,=13 b, =29 z=4
X,=-1 w,=2 b,=-2 h=4
y=6 w, =2.34 g(z)=RelLu y=8

Q: So we have update the parameters. Did our
prediction get better?

Class example: One full learning loop

=2 w,=13 b, =29 z=4
X,=-1 w,=2 b,=-2 h=4
y=6 w,=234 g(z)=Relu y=6.19

Q: So we have update the parameters. Did our
prediction get better?

A: z=(2*1.3)+(-1*2)+2.9 =3.5
h = max(0,3.5) =3.5
y=(2.34*3.5)-2 =6.19

Yes, we got much closer!
(8 — 6.19, while truey is 6)

Summary: You just manually trained a
neural network (one learning loop)

Goal = tunethe °
parameters®to - i —
minimize the loss - |

(= optimization) - | model

@ . | Prediction
- |

The parametric model

®

e
QD .
—_n
ml
3.
D
P
@,
=
——U’.—
G E—— E—— - - S S S S S

©
c
f_'-

Break

2. Advanced Neural Network
Architectures

Advanced neural network architectures

1. Convolutional Neural Network (CNN)

= 'the NN solution to space’

2. Recurrent Neural Network (RNN)

= 'the NN solution to time/sequence’

Convolutional Neural Network (CNN)

Problem:
For high-dimensional input (e.g. images) fully connected layers have way too many
parameters/connections.

Convolutional Neural Network (CNN)

Problem:
For high-dimensional input (e.g. images) fully connected layers have way too many

parameters/connections.

Solution:
Convolutions. Useful for data with grid-like structure, especially 2D/3D (computer

vision), where subpatterns re-appear throughout the grid.

Underlying ideas:

1. Local connectivity: connect input only locally through small kernel
2. Parameter sharing: re-use (move) the kernel along the grid/image/video

Convolutional Neural Network (CNN)

Source pixel

kernel: move along the input

input

output

destination pixel

-
-
=

Convolutional Neural Network (CNN)

Source pixel

kernel: move along the input

input

>
-
1 .."'

- Besides that similar to fully connected: take linear combination with (kernel)
weights, then add non-linearity.
- But we preserve the grid (2D/3D) structure into the next layer.

Convolutional Neural Network (CNN)

Stacking layers = Hierarchy

Convolution Pooling Convolution Pooling Fully Fully Output Predictions
Connected Connected

dog (0.01)
cat (0.04)
boat (0.94)
bird (0.02)

Note: The higher-up in the hierarchy, the wider the 'receptive field' in the original image.

Convolutional Neural Network (CNN)

Visualizing the Hierarchy

Low-Level| |Mid-Level| |High-Level Trainable
Feature Feature Feature Classifier

1
l

Zeiler, Matthew D., and Rob Fergus. Visualizing and understanding convolutional networks. 2013.

Convolutional Neural Network (CNN)

Convolution (& Pooling) = effectively a very strong prior on a fully connected layer:

- remove many weights (force to 0)
- tie the values of some others (parameter sharing)

Convolutional Neural Network (CNN)

Convolution (& Pooling) = effectively a very strong prior on a fully connected layer:

- remove many weights (force to 0)
- tie the values of some others (parameter sharing)

Q: Can you think of an example in which convolution would not work?

Convolutional Neural Network (CNN)

Convolution (& Pooling) = effectively a very strong prior on a fully connected layer:

- remove many weights (force to 0)
- tie the values of some others (parameter sharing)

Q: Can you think of an example in which convolution would not work?

A: When there is no spatio-temporal (i.e. grid-like) structure in the data.
For example, if x contains patient information (age, gender, medication, etc.), then it
does not make sense to move a window along it (there is no repeating structure).

Recurrent Neural Network (RNN)

For sequential/temporal data
(text, video, audio, most real-world data is a sequence/stream)

Recurrent Neural Network (RNN)

For sequential/temporal data
(text, video, audio, most real-world data is a sequence/stream)

Feed information of
previous step into next
timestep

Recurrent Neural Network (RNN)

For sequential/temporal data
(text, video, audio, most real-world data is a sequence/stream)

Feed information of
previous step into next
timestep

Rolled out graph over
time

RNN Training

Key idea:

- Recurrent connection between timesteps at the hidden level
- Parameter sharing (again): the recurrent parameters are the same at every
timestep.

RNN Training

Key idea:

- Recurrent connection between timesteps at the hidden level
- Parameter sharing (again): the recurrent parameters are the same at every
timestep.

But: How to train it?

RNN Training

Key idea:

- Recurrent connection between timesteps at the hidden level
- Parameter sharing (again): the recurrent parameters are the same at every
timestep.

But: How to train it?

Backpropagation Through Time (BPPT)
Feed in the entire sequence - backpropagate loss through the recurrency

(until the beginning)
G) () G

RNN architecture variants

one to one one to many many to one many to many many to many
1 te et ottt ottt
i t ottt tttttt
feedforward (e.g action (e.g. translation)
network classification)

3. Deep Learning

Deep Learning

Output
Mapping from
Output Output T
Additional
Output Mapping from Mapping from layers of more
S features features abstract
featnres White box = hand designed
? T f ? Grey box = learned
Hand- Hand- Simpl
5 5 Simple
designed designed Features e
program features
'End-to-end learning'
Input Input Input Input
- Deep
Rule-based ¢ a:,:?w learning
machine
systems learning Representation

learning

Deep Learning

“We have never seen machine learning or artificial intelligence technologies so
quickly make an impact in industry.”

-- Kai Yu, Baidu

Deep learning =
stacking many neural network layers & training them end-to-end

(i.e. already discussed)

. Illustration: Computer Vision

ILSVRC (ImageNet Large-Scale Visual Recognition Challenge)

ImageNet dataset: 1.2 million pictures over 1000 classes.

(x —vy)

. Illustration: Computer Vision

ILSVRC (ImageNet Large-Scale Visual Recognition Challenge)

Year Model name Error rate Details
Before 25.7%
2012

. Illustration: Computer Vision

ILSVRC (ImageNet Large-Scale Visual Recognition Challenge)

Year Model name Error rate Details
Before 25.7%
2012
2012 AlexNet 15.4% 7 layers, GPU's, Relu activation

. Illustration: Computer Vision

ILSVRC (ImageNet Large-Scale Visual Recognition Challenge)

Year Model name Error rate Details
Before 25.7%
2012
2012 AlexNet 15.4% 7 layers, GPU's, Relu activation
2013 ZF Net 11.2% Visualization by deconvolution
2014 VGG Net 7.3% Deep (19 layers)
2015 GoogleNet 6.7% Very deep (100 layers), Inception module
2015 ResNet 3.4% Residual connections

. Illustration: Computer Vision

ILSVRC (ImageNet Large-Scale Visual Recognition Challenge)

Year Model name Error rate Details
Before 25.7%
2012
2012 AlexNet 15.4% 7 layers, GPU's, Relu activation
2013 ZF Net 11.2% Visualization by deconvolution
2014 VGG Net 7.3% Deep (19 layers)
2015 GoogleNet 6.7% Very deep (100 layers), Inception module
2015 ResNet 3.4% Residual connections
Human 5~10%

I. History of Neural Networks

Deep Neural Network

(Pretraining)
A
' 3

XOR Perceptron
ADALINE (Backpropagation)
' N A
F N
Perceptron
Golden Age Dark Age (“Al Winter”)

Electronic Brain

1960 1970 1980

S. McCulloch - W. Pitts G. Hinton = S. Ruslan

XAND Y XORY NOT X Foward Activity » | . A i i -
vvvv — l... & { r— rr—
%o % T — e e,
5 L. L. [I
+1 4] 2 41741 Y | oon g)
/ ‘ \\ x/ Iv \ ‘ —— Backward Error \—‘
« Adjustable Weights * Learnable Weights and Threshold « XOR Problem « Solution to nonlinearly separable problems = Limitations of learning prior knowledge * Hierarchical feature Learning
« Weights are not Learned + Big computation, local optima and overfitting * Kernel function: Human Intervention

I. History of Neural Networks

Deep Neural Network
(Pretraining)

Multi-layered
XOR Perceptron 1
ADALINE (Backpropagation)

' N A
Perceptron

A Golden Age Dark Age (“Al Winter”)

Electronic Brain

1960 1970 1980

" i

G. Hinton - S. Ruslan

S. McCulloch - W. Pitts F.Rosenblatt B. Widrow - M. Hoff
XAND Y XORY NOTX Foward Activity ——p 1 . N 3 i T
"""" e oo, S L o —
%o % — e e,
o — e — ' —
+1741 2 #1741) @ | 000 © Ei
/ ‘ \” ,(/ I, \ ‘ —— Backward Error o [
« Adjustable Weights * Learnable Weights and Threshold « XOR Problem « Solution to nonlinearly separable problems = Limitations of learning prior knowledge * Hierarchical feature Learning
« Weights are not Learned + Big computation, local optima and overfitting * Kemnel function: Human Intervention

1. The Benefit of Depth

Test accuracy (percent)

Depth is beneficial beyond just giving more parameters

97 1 | 1 1 !

96 e—e 3. convolutional
+—+ 3, fully connected

95 | V¥ 11, convolutional []

94 -

03 |- W , s -
—— 1

92 | .

91 | | | | |

0.0 0.2 0.4 0.6 0.8 1.0

Number of parameters

x108

V. Combining Layers

Vision Language
Deep CNM Generating RNMN
@ A group of people
o shopping at an outdoor CN N
@ @ market.
~®: — — +
@ -9 There are many
: -® vegetables at the RN N
@ fruit stand.

Karpathy A. Fei-Fei L. Deep Visual-Semantic Alignments for Generating Image Descriptions. 2015.
TEREEEEEEEEEE "EGGEGEHEEEESR

V. Combining Layers

Vision Language
Deep CNM Generating RMNM

A group of people

. m shopping at an outdoor CN N

2 @ market.

e — —_— +
@ There are many

= vegetables at the RNN

fruit stand.

A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
mountain in the background

A little girl sitting on a bed with a teddy bear, A group of people sitting on a boat in the waber, A giraffe standing in a forest with
trees in the background,

Karpathy A. Fei-Fei L. Deep Visual-Semantic Alignments for Generating Image Descriptions. 2015.

V. Deep Learning Research

controller
inpu‘E o B ’o_}xtput e I Input e
2 code i ’ iledc ‘k\-\l Real
’ /‘ . e
X < lz| |2 X f."; F;P OO i::;/wme
B e
Autoencoders Adversarial Training Neural Turing Machines

man woman .
without glasses without glasses woman with glasses

mar
with glasses

Deep Generative Models Deep Reinforcement Learning
e

VI. The other pillars of deep learning

(Apart from the algorithms/math discussed in this lecture)

VI. The other pillars of deep learning

(Apart from the algorithms/math discussed in this lecture)

1. Data 2. Computation

3. Software

theano

TensorFlow ¢ [OCN

Reading Material

1. Lecture Notes

2. Deep learning book (Free PDF: http://www.deeplearningbook.org/)

Read:

Fully connected layers: 6.0-6.1,6.3

Loss functions: 6.2

Numerical Optimization: 4.0-4.3,5.9,6.5.1-4,8.1-8.1.1
CNN: 9.0-9.4

RNN: 10.0,10.1,10.2.0,10.2.2

Deep learning: 1.0 (+ figure 1.5)

