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Content for today

1. The Feedforward Network
a. Artificial Neural Network (ANN): A Parametric Model

b. Loss Functions

c. Numerical Optimization

2. Advanced Neural Network Architectures
a. Convolutional Neural Network (CNN)
b. Recurrent Neural Network (RNN)

3. Deep learning
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1. The Feedforward Network
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Artificial Neural Network structure
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A: 13

First layer: 6 weights + 3 biases

Second layer: 3 weights + 1 bias
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Activation Functions

Q: Why not stack multiple linear layers?

A: Composition of linear transformations is still linear. 



Activation Functions

Q: Why not stack multiple linear layers?

A: Composition of linear transformations is still linear. 

Activation function = non-linear transformation
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Activation Functions

1980-2010 : Sigmoid & Tanh. Problems: saturate (both sides) & hard to copy input

2010-now : ReLu & ELU (Partially linear functions): gradient flows more easily
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ANN: Layer Stacking
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Idea: 

Repeatedly apply the input to such a 
parametrized layer

or, when fully written out

Note: In the last layer we do not apply 
a standard non-linearity g(). More 

about this in the loss function part. 
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1. Specify error measure between ŷ (prediction) and y (true data target)

2. Minimize that quantity over the entire dataset



B. Loss function

General idea:

1. Specify error measure between ŷ (prediction) and y (true data target)

2. Minimize that quantity over the entire dataset

Two important considerations:

1. Type of y variable (regression vs classification)

2. Deterministic versus probabilistic loss
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Continuous Regression Number on real line Direct prediction (1 head) or 
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1. Regression versus classification (= type of target variable (y))

Cardinal example: Regression on Mean-Squared Error (MSE) 

B. Loss function

Target type (y) Name Prediction Network output

Continuous Regression Number on real line Direct prediction (1 head) or 
parameters of contin prob. distr.

Discrete Classification Class label out of a set Usually one network head per class

true labelprediction

square the 
error

sum over 
whole dataset

Q: why the square of the error?

A: penalize positive and negative errors + 
easier derivative (compared to absolute error)



B. Loss function

2. Deterministic versus probabilistic loss

Main idea of probabilistic loss: The network predicts the parameters of a probability 
distribution out of which the observed y would be sampled, instead of predicting y directly.
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2. Deterministic versus probabilistic loss

Main idea of probabilistic loss: The network predicts the parameters of a probability 
distribution out of which the observed y would be sampled, instead of predicting y directly.

For example:

ŷ ~ N(.|μ,σ) and



B. Loss function

2. Deterministic versus probabilistic loss

Main idea of probabilistic loss: The network predicts the parameters of a probability 
distribution out of which the observed y would be sampled, instead of predicting y directly.

Benefits:

1. Model stochastic output & sensor noise
2. Directly have a loss function:

'Maximum likelihood estimation' = learn a model that gives maximum probability to 
the observed data

See lecture notes for details (also for classification case)
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Gradient Descent

Update rule:

C. Numerical optimization

Learning rate



NN objective/cost

=

Non-convex

Learning rate = crucial

Too small : no progress

Too large : unstable 

Non-Convex Objective Function



Importance of learning rate



Two issues around the same problem:

How do we get the gradients in feasible computational time?

1. Datasets are usually large: 

Solution: stochastic gradient descent (SGD)

2. Networks are usually large:

Solution: backpropagation ('backprop')

Gradient Descent for Neural Networks



Stochastic Gradient Descent

True gradient is a sum over the entire dataset:

Dataset size (N) may be millions.  



Stochastic Gradient Descent

True gradient is a sum over the entire dataset:

Dataset size (N) may be millions.  

Solution: approximate the gradient with a sample from the dataset 
(= a 'minibatch' per parameter update)

Minibatch size (usually m=32 or m=64) stays fixed when dataset grows!
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First: How do we get the gradient anyway?



Backpropagation

First: How do we get the gradient anyway?

Required: Chain Rule of Calculus

Example:

z = f(x) h = g(z) --> h = g(f(x))

How do we get dh/dx?

x z hf() g()



Backpropagation

First: How do we get the gradient anyway?

Required: Chain Rule of Calculus

Example:

z = f(x) h = g(z) --> h = g(f(x))

How do we get dh/dx?

chain = multiply the gradients of the subfunctions

(generalizes to case where x,z and h are vectors - need partial derivatives (see lecture notes))

x z hf() g()
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Class example: NN gradients

Q: Now our input x is actually a vector of 
length 2. Can you give dL/dw

1
 and dL/dw

2
?

A:

large part of the gradient is the same

(= key idea of backpropagation)
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Backpropagation

Main idea:

- Efficiently store gradients and re-use them by walking backwards 
through the network. 
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Main idea:

- Efficiently store gradients and re-use them by walking backwards 
through the network. 
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Q: We assume the squared loss L = (ŷ - y)2.
Compute the loss for this datapoint. 
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Class example: One full learning loop
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Class example: One full learning loop
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Class example: One full learning loop

x
1

h

ŷ

x
1

 = 2 w
1

 = 1.3 b
1

 = 2.9 z = 4
x

2
 = -1 w

2
 = 2 b

2
 = -2 h = 4

y = 6 w
3

 = 2.34 g(z) = ReLu ŷ = 8

Q: So we have update the parameters. Did our 
prediction get better? 

  

y

L

x
2

h = g(w
1

x
1

+w
2

x
2

+b
1

)

ŷ = w
3

h+b
2

L = (ŷ - y)2

w

1

w

2

w

3



Class example: One full learning loop
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Q: So we have update the parameters. Did our 
prediction get better? 

A: z = (2*1.3) + (-1*2) + 2.9 = 3.5 
h = max(0,3.5) = 3.5
ŷ = (2.34*3.5) - 2 = 6.19

Yes, we got much closer!
(8 → 6.19, while true y is 6)
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Summary: You just manually trained a 
neural network (one learning loop)
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2. Advanced Neural Network 
Architectures



Advanced neural network architectures

1. Convolutional Neural Network (CNN)

= 'the NN solution to space'

2. Recurrent Neural Network (RNN)

= 'the NN solution to time/sequence'



Convolutional Neural Network (CNN)

Problem: 
For high-dimensional input (e.g. images) fully connected layers have way too many 
parameters/connections.

 



Convolutional Neural Network (CNN)

Problem: 
For high-dimensional input (e.g. images) fully connected layers have way too many 
parameters/connections.

Solution: 
Convolutions. Useful for data with grid-like structure, especially 2D/3D (computer 
vision), where subpatterns re-appear throughout the grid. 

Underlying ideas:

1. Local connectivity: connect input only locally through small kernel 
2. Parameter sharing: re-use (move) the kernel along the grid/image/video

 



Convolutional Neural Network (CNN)

input

output

kernel: move along the input



Convolutional Neural Network (CNN)

kernel: move along the input

- Besides that similar to fully connected: take linear combination with (kernel) 
weights, then add non-linearity. 

- But we preserve the grid (2D/3D) structure into the next layer. 

input

output



Convolutional Neural Network (CNN)

Stacking layers = Hierarchy

Note:  The higher-up in the hierarchy, the wider the 'receptive field' in the original image.



Convolutional Neural Network (CNN)

Visualizing the Hierarchy

Zeiler, Matthew D., and Rob Fergus. Visualizing and understanding convolutional networks. 2013.



Convolutional Neural Network (CNN)

Convolution (& Pooling) = effectively a very strong prior on a fully connected layer: 

- remove many weights (force to 0) 
- tie the values of some others (parameter sharing)
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Convolutional Neural Network (CNN)

Convolution (& Pooling) = effectively a very strong prior on a fully connected layer: 

- remove many weights (force to 0) 
- tie the values of some others (parameter sharing)

Q: Can you think of an example in which convolution would not work?

A: When there is no spatio-temporal (i.e. grid-like) structure in the data. 
For example, if x contains patient information (age, gender, medication, etc.), then it 
does not make sense to move a window along it (there is no repeating structure).



Recurrent Neural Network (RNN)

For sequential/temporal data 
(text, video, audio, most real-world data is a sequence/stream)



Recurrent Neural Network (RNN)

For sequential/temporal data 
(text, video, audio, most real-world data is a sequence/stream)

Feed information of 
previous step into next 

timestep



Recurrent Neural Network (RNN)

For sequential/temporal data 
(text, video, audio, most real-world data is a sequence/stream)

Feed information of 
previous step into next 

timestep

Rolled out graph over 
time
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RNN Training

Key idea:

- Recurrent connection between timesteps at the hidden level
- Parameter sharing (again): the recurrent parameters are the same at every 

timestep. 

But: How to train it?

Backpropagation Through Time (BPPT) 
Feed in the entire sequence - backpropagate loss through the recurrency 
(until the beginning) 



RNN architecture variants

(e.g. translation)(e.g action 
classification)

feedforward

network



3. Deep Learning



Deep Learning

White box = hand designed

Grey box = learned

'End-to-end learning'



Deep Learning

“We have never seen machine learning or artificial intelligence technologies so 
quickly make an impact in industry.”

        -- Kai Yu, Baidu

Deep learning = 
stacking many neural network layers & training them end-to-end 

(i.e. already discussed)



I. Illustration: Computer Vision

 ILSVRC (ImageNet Large-Scale Visual Recognition Challenge)

ImageNet dataset: 1.2 million pictures over 1000 classes. 

(x → y)
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I. Illustration: Computer Vision

 ILSVRC (ImageNet Large-Scale Visual Recognition Challenge)

Year Model name Error rate Details

Before 
2012

25.7%

2012 AlexNet 15.4% 7 layers, GPU's, Relu activation

2013 ZF Net 11.2% Visualization by deconvolution

2014 VGG Net 7.3% Deep (19 layers)

2015 GoogleNet 6.7% Very deep (100 layers), Inception module

2015 ResNet 3.4% Residual connections

Human     5~10%



II. History of Neural Networks
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III. The Benefit of Depth

Depth is beneficial beyond just giving more parameters



IV. Combining Layers

Karpathy A. Fei-Fei L. Deep Visual-Semantic Alignments for Generating Image Descriptions. 2015. 

CNN 
+ 

RNN
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V. Deep Learning Research 

Autoencoders Neural Turing MachinesAdversarial Training

Deep Generative Models Deep Reinforcement Learning



VI. The other pillars of deep learning
(Apart from the algorithms/math discussed in this lecture)



VI. The other pillars of deep learning
(Apart from the algorithms/math discussed in this lecture)

1. Data 2. Computation

3. Software



Reading Material

1. Lecture Notes

2. Deep learning book (Free PDF: http://www.deeplearningbook.org/)

Read:

Fully connected layers: 6.0-6.1, 6.3

Loss functions: 6.2

Numerical Optimization: 4.0-4.3, 5.9, 6.5.1-4, 8.1-8.1.1

CNN: 9.0-9.4

RNN: 10.0,10.1,10.2.0,10.2.2

Deep learning: 1.0 (+ figure 1.5)


