Learning Multimodal Transition Dynamics for Model-Based Reinforcement Learning

Thomas Moerland, Joost Broekens, Catholijn Jonker

Delft University of Technology The Netherlands

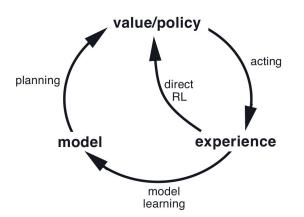
Content

- 1. Introduction
- 2. Conditional Variational Inference
- 3. Experiments
- 4. Conclusion

Introduction

Model-based RL:

- Transition dynamics approximation (supervised learning)
- 2. Planning



Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction. Vol. 1. No. 1. Cambridge: MIT press, 1998.

Introduction

Model-based RL:

- Transition dynamics approximation (supervised learning)
- 2. Planning

Benefits:

- Data efficiency
- Targeted exploration

Introduction

Model-based RL:

- Transition dynamics approximation (supervised learning)
- 2. Planning

Benefits:

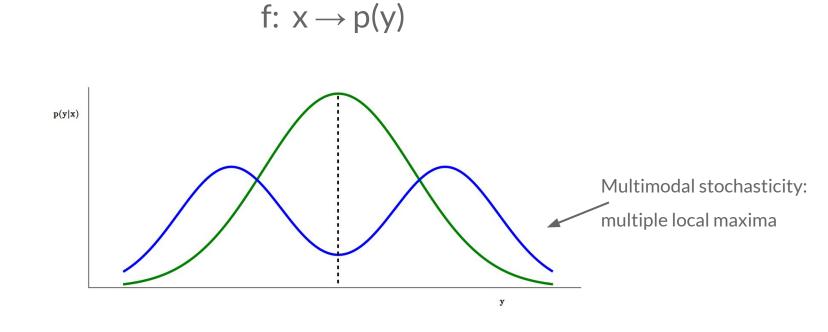
- Data efficiency
- Targeted exploration

Challenges (ad 1.):

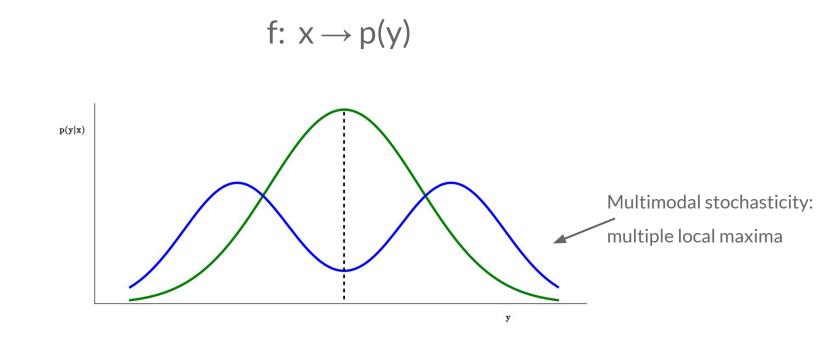
- Stochasticity
- (High-dimensionality)

Stochasticity

Stochasticity

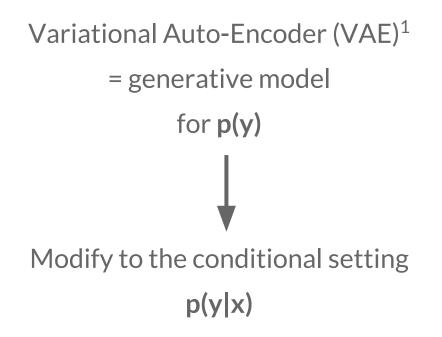


Stochasticity



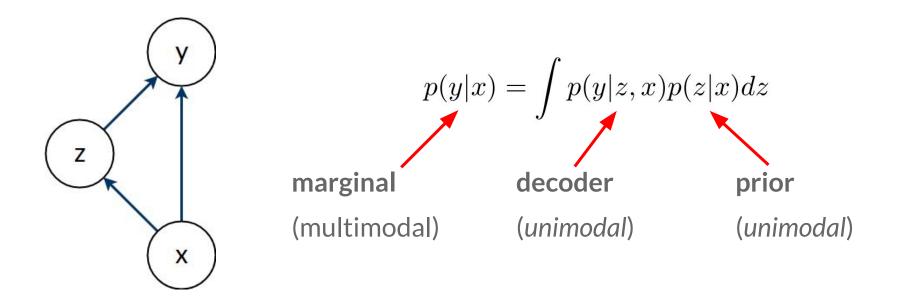
- 1) Mean-squared error (MSE)/deterministic prediction fails
- 2) Most density estimation techniques (e.g. Gaussian mixtures) don't scale

Solution: Deep Generative Model



1. Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." arXiv preprint arXiv:1312.6114 (2013).

Introduce latent variables **z** to obtain more expressivity in the marginal:



Problem:

- a) **z** is not observed (what value to plug in?)
- b) Posterior p(z|x,y) is not tractable

Problem:

- a) **z** is not observed (*what value to plug in?*)
- b) Posterior p(z|x,y) is not tractable

Solution:

a) Parametric inference network q(z|x,y) that approximates p(z|x,y)

Problem:

- a) **z** is not observed (*what value to plug in?*)
- b) Posterior p(z|x,y) is not tractable

Solution:

- a) Parametric inference network q(z|x,y) that approximates p(z|x,y)
- b) Maximize the Evidence Lower Bound (ELBO):

 $\log p(y|x) \ge \mathbb{E}_{z \sim q(\cdot|x,y)}[\log p_{\theta}(y|z,x)] - D_{\mathrm{KL}}[q_{\phi}(z|x,y) \| p_{\phi}(z|x)] = \mathcal{L}(y|x;\theta,\phi)$

Problem:

- **z** is not observed (what value to plug in?) a)
- Posterior p(z|x,y) is not tractable b)

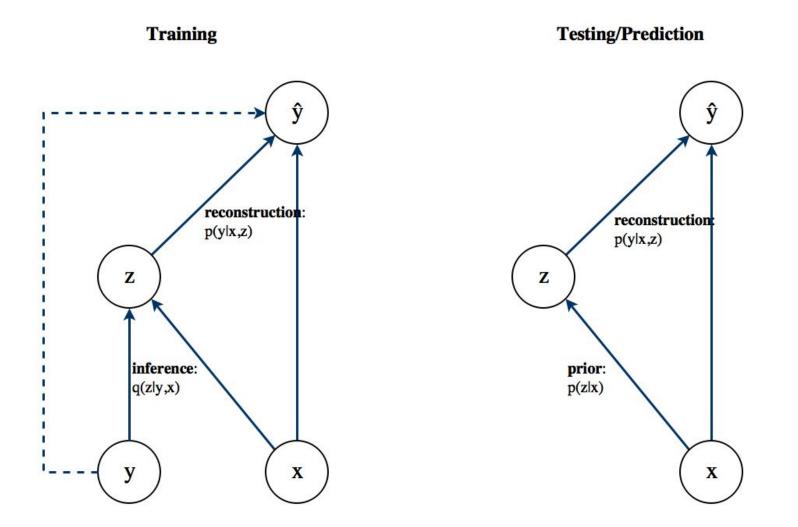
Solution:

- Parametric inference network q(z|x,y) that approximates p(z|x,y)a)
- b) Maximize the Evidence Lower Bound (ELBO):

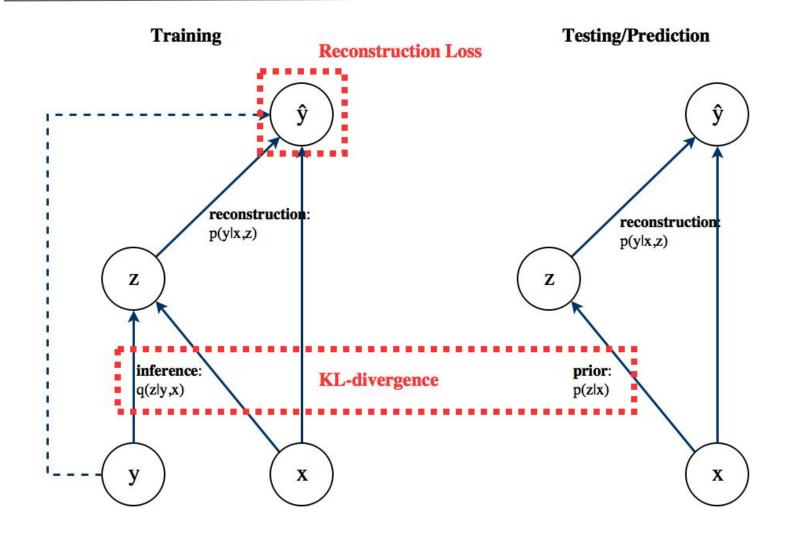
 $\log p(y|x) \ge \mathbb{E}_{z \sim q(\cdot|x,y)}[\log p_{\theta}(y|z,x)] - D_{\mathrm{KL}}[q_{\phi}(z|x,y)||p_{\phi}(z|x)] = \mathcal{L}(y|x;\theta,\phi)$

Reconstruction KL-term/Regularization

2. CVAE: Computation

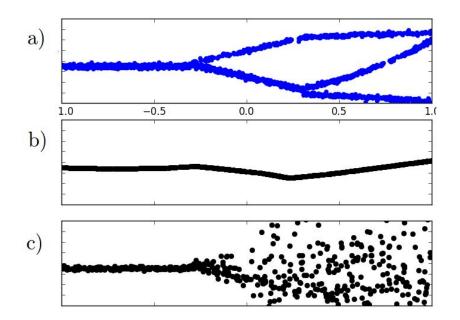


2. CVAE: Computation



2. CVAE

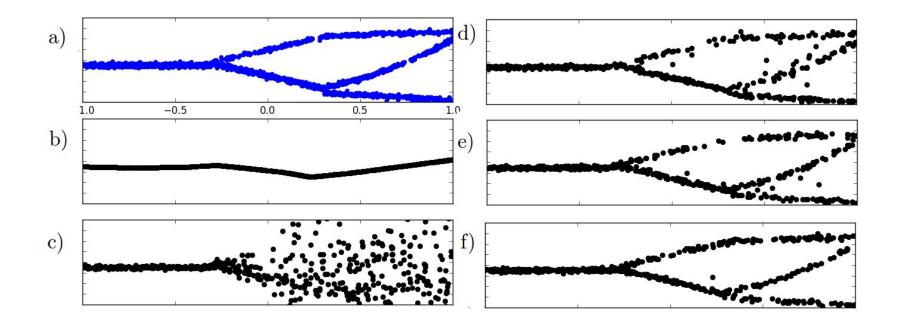
- I. Scales to larger dimensions
- II. Training details in the paper:
 - A. Reparametrization of z variables
 - B. Continuous versus discrete latent variables z
 - C. Importance sampling
 - D. α -divergence training



a) True data

b) Mean-squared error

c) MLP with noise input **z**



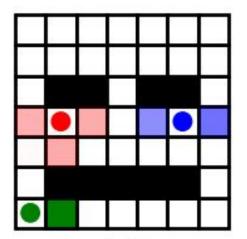
a) True data

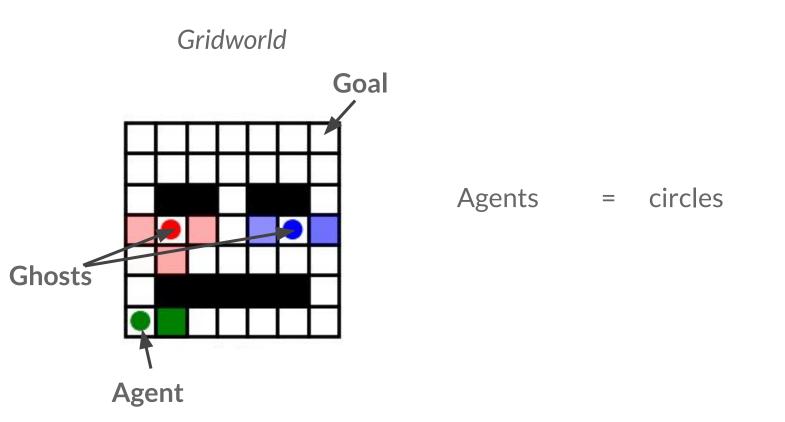
b) Mean-squared error

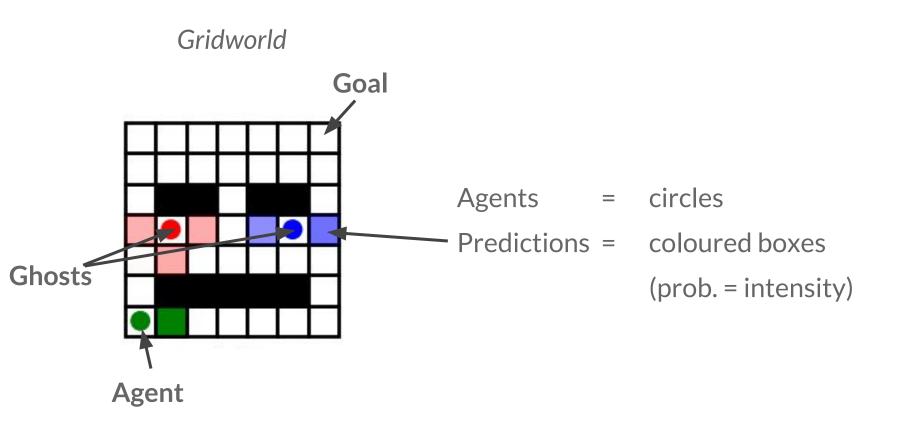
c) MLP with noise input **z**

- d) **CVAE** with contin. **z**
- e) **CVAE** with contin. **z** + flow
- f) **CVAE** with discrete **z**

Gridworld

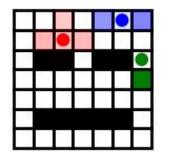






down

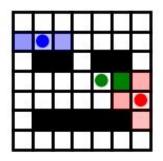
right

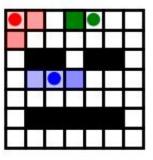


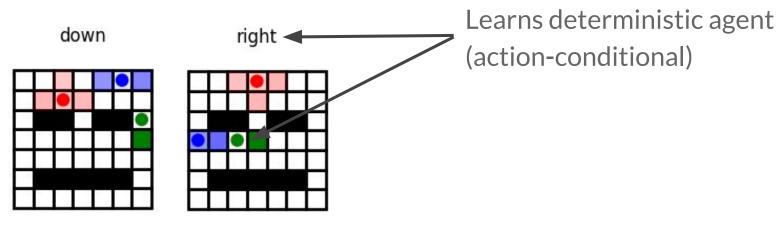
Ĵ			•			
1	10	1	1	8	9-7	
				- 23		
16	12	9-1	1	- 82	1	E 3
2						

right

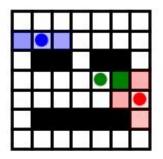
left

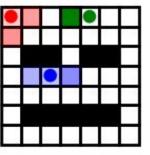


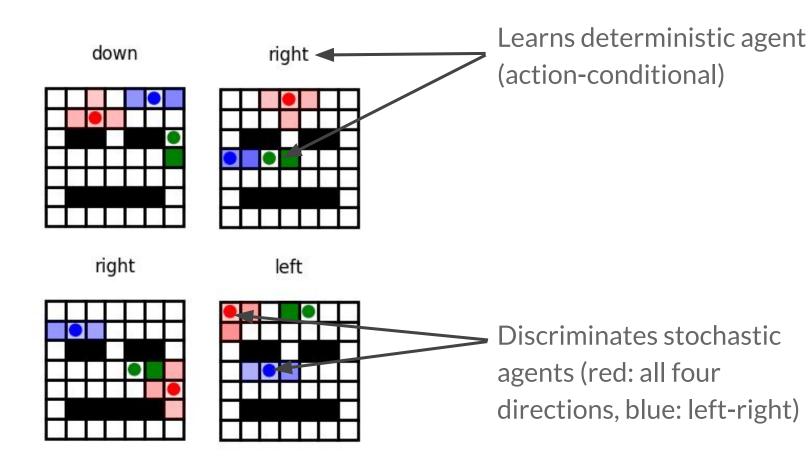




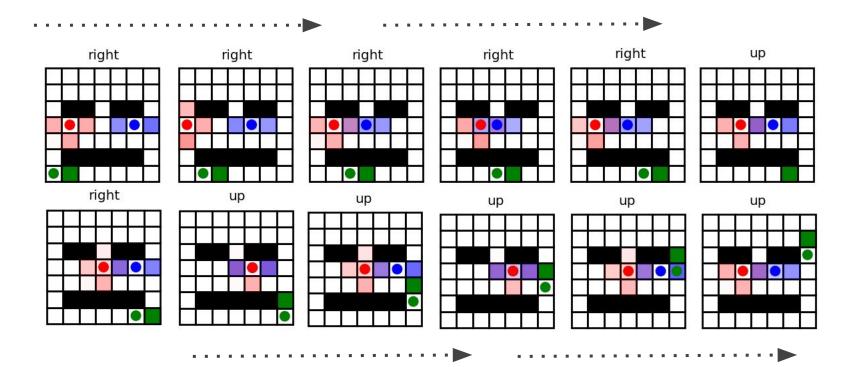
right





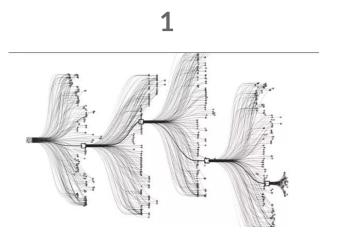


3. Experiments: on-policy predictions



Full roll-out in model

4. Future Work

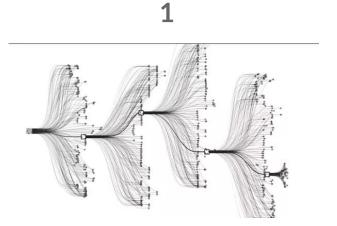


Planning (under uncertainty)

2

3

4. Future Work

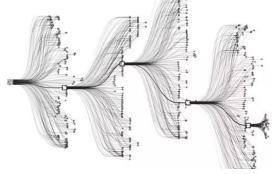


Planning (under uncertainty)

Higher-dimensions

3

4. Future Work



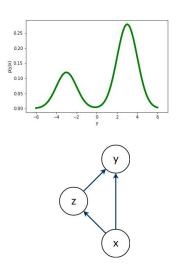
Planning (under uncertainty)

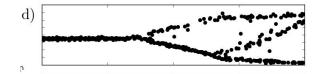
Higher-dimensions

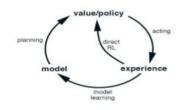
Memory/ Partial-observability

4. Conclusion

- 1. Stochasticity is a fundamental problem in model-based RL
- 2. Conditional Variational Auto-Encoder (CVAE) learns complex p(y|x) in high dimensions
- 3. Experiments show multimodal predictions
- 4. Useful for model-based RL researchers





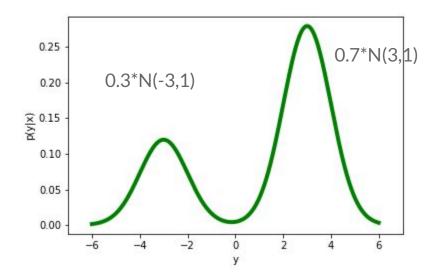


Thanks! Any questions?

Can always reach me at: <u>T.M.Moerland@tudelft.nl</u>

Full code online: <u>www.github.com/tmoer/multimodal_varinf</u>

2. CVAE: Illustration



- 1) Specify size of **z**-space: **z** in {0,1}
- 2) Present datapair (x=x,y=3)
- 3) Inference network predicts we should sample z=1
- 4) Recognition network predicts (given the sampled z) to sample from N(3,1)
- 5) Repeat over datapairs (mini-batches): KL divergence with prior will learn $p_0=0.3$, $p_1=0.7$
- 6) At test time: sample from prior, and then from the conditional Gaussian