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1 Introduction

In this work1 we study how to learn stochastic, multimodal transition dynamics
in reinforcement learning tasks. Model-based RL is an important class of RL algo-
rithms that learns and utilizes transition dynamics to enhance data efficiency and
target exploration. However, many tasks environments inherently have stochastic
transition dynamics. We therefore require methods to approximate such complex
distributions, while they should also scale to higher-dimensions. In this paper we
study conditional variational inference in (deep) neural networks as a principled
method to solve this challenge.

2 Conditional Variational Inference

Our goal is to learn a generative model of a (possibly multimodal) distribution
p(y|x). We assume the generative process is actually conditioned on some un-
observed latent variables z: p(y|x) =

∫
p(y|z, x)p(z|x)dz. The stochastic latent

variables z provide the flexibility to predict complex marginal outcome distribu-
tions p(y|x). However, the z variables are unobserved and the posterior over z,
p(z|y, x), is analytically intractable in most models of interest (for example deep
non-linear neural networks).

However, the parameters of this distribution can be efficiently approximated
with Stochastic Gradient Variation Bayes (SGVB) [1]. We may first derive a
variational lower bound L(y|x) on our data likelihood p(y|x):

log p(y|x) ≥ Ez∼q(·|x,y)[log pθ(y|z, x)]−DKL[qφ(z|x, y)‖pφ(z|x)] = L(y|x; θ, φ)
(1)

where θ denotes the parameters in a generative network pθ(y|x, z), φ denotes
the parameters in an inference network qφ(z|y, x) and prior pφ(z|x), and DKL

denotes the Kullback-Leibler (KL) divergence. The parametric inference network
approximates the intractable true posterior over z, while the KL divergence term
ensures that the inference network qθ(z|y, x) does not diverge too much from the
prior pφ(z|x). This acts as a regularizer, and ensures that we can at test time
(when we do not observe y) sample from p(z|x) instead of q(z|x, y).

1 Originally published as: Moerland TM, Broekens J, Jonker CM. Learning Multi-
modal Transition Dynamics for Model-Based Reinforcement Learning. In Scaling-Up
Reinforcement Learning (SURL) Workshop @ ECML. 2017.
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Fig. 1. Comparison of samples from the models produced by multi-layer perceptron
(MLP) and conditional variational inference (CVI) networks after training for 30,000
mini-batches. a) Ground truth (artificial) data. b) MLP with deterministic prediction.
c) MLP with stochastic inputs. d) CVI with discrete latent z variables.

While the original variational auto-encoder was introduced as a generative
model for p(y), the RL setting requires us to condition the entire generative
process on the previous state x (i.e. in prior, inference and recognition network).
Then, the objective in Eq. 1 can be trained on a single computational graph
through the reparametrization trick, for details see [1]. For this work we experi-
ment with different types of continuous and discrete latent variables z, for more
details see the original paper.

3 Experiments

We illustrate these ideas on an artificial transition function (Fig. 1a) with uni-
modal (Fig. 1a, left part), bimodal (middle), and trimodal (right) dynamics. Fig.
1b shows the predictions of a default MLP trained on mean-squared error, which
erroneously fits the conditional expectation. Since CVI uses additional noise in-
put to the network (by sampling z), we also compare to a MLP with additional
stochastic inputs. Without the inference network, the model is unable to map the
input noise to the correct output distribution (Fig. 1c). In contrast, the model
with CVI (Fig. 1d) accurately learns the different types of multi-modality, while
also correctly predicting the deterministic part of the function. Please refer to
the original paper for experiments on reinforcement learning tasks.

4 Conclusion

Our results show that conditional variational inference in deep neural networks
successfully predicts multimodal distributions, but also robustly ignores these for
deterministic parts of the transition dynamics. Due to the flexibility of neural
networks as black-box function approximators, these results are applicable to a
variety of RL tasks, and are a key preliminary for model-based RL in stochastic
domains.

References

1. Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.


	Learning Multimodal Transition Dynamics for Model-Based Reinforcement Learning: Abstract.
	Introduction
	Conditional Variational Inference
	Experiments
	Conclusion


