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For this assignment you will solve the maze from the previous assignment, but this time using
a dynamic programming approach.

Assignment files, Python and Numpy

e First download the assignment zip file from Brightspace. Unzip it and inspect the folder.
It should contain three files: world.py, dynamic_programming.py, and an example envi-
ronment definition prison.txt.

e The coding assignment will be in Python 3. Verify that your operating system has Python
3 installed, otherwise install it.

e We will also need a specific package: NumPy, short for Numerical Python. Numpy is
an important Python package, which can be used if you want to do vector and matrix
operations. For the assignments, you will mostly need to understand indexing and slicing
into value and state-action value arrays.

e You can install a variety of scientific Python packages at once by installing the individual
version of the Anaconda package: https://www.anaconda.com/products/individual.
This will also give you a Python editor: Spyder. However, feel free to manually install
Python 3, NumPy, and an IDE of your own choice.

e If your are unfamiliar with Python and Numpy, you may take a quick tutorial for both
online. Do not spend too much time here, you will only need a few basic concepts, which
you can also search for during the assignment.

Handing in assignment You need to submit three files, where you replace name and studentnumber
with your own characteristics:

e dynamic_programming_ name_studentnumber.py, your modified version of dynamic_programming.py
with the relevant answers. Be sure to check whether your solution runs from the command
line.

e prison_name_studentnumber.txt, your modified version of prison.txt for the relevant
exercise.

e answers_name_studentnumber.pdf, with your answers to the open questions in the as-
signment.

Send these three files to the responsible teacher in a single zip file named:
name_studentnumber_DPpractical.zip.



1 Coding Exercises

In these exercises you will implement Value iteration (VI) and Q-value iteration (QI), two variants
of Dynamic Programming, to solve a given Markov Decision Process. We will first explain the
environment (the MDP definition), and the starting point for your algorithm implementation.

1.1 The environment

The environment is pre-coded for you in world.py. It contains the class definition of World (filename),

which will initialize the environment specified in the text file filename.

e Definition in txt file: You can define the environment in a txt file. An example is
provided in prison.txt. We use the following encoding:

* = agent location

# = wall

a (lower case) = key

A (upper case) = door

1 (numeric) = goal (terminates episode). The reward is equal to 10 times the numeric
element at the goal.

nitialization map:
# #

*
d
#

I
#
#
#
#
#
#
#
#

Figure 1: Prison example provided in prison.txt.

¢ Explanation of MDP:

State space: The state is represented as an index. For the provided example, there are
64 unique states, since there are 16 free locations, and two keys. In each location, we
can hold or not hold either key, which gives rise to 16 - 2 - 2 possible states. These are
simply numbered 0-63. If you want to know what situation a particular state actually
represents, you can call the method World.print_state(state)), see below.

Action space: In every state, the agent has four possible actions: {up, down, left,
right}.
Dynamics: When the agent moves into a wall, it just remains at the same position.

The agent automatically picks up a key when stepping on the specific location, and
automatically opens the door when stepping on it while holding the specific key.

Reward: The reward at every transition is —1, except when we reach a goal: the
reward is then equal to 10 times the numeric element at the goal. So, in the example
above, the reward at the goal is equal to 30.

Gamma: We assume v = 1.0 throughout the experiments.

e Attributes: An World object has a few important attributes:



states returns a list of all states. When you initialize a map, all possible configu-
rations of agent location and key possession are automatically inferred for you, and
each possible combination is assigned a unique state index.

n_states returns the total number of states (a scalar).
actions a list of all possible actions.
n_actions returns the total number of actions (a scalar).

terminal indicates whether the agent has reached a goal (task terminates).

e Methods: An World object has several important methods.

transition_function(s,a) computes, for a given state and action, the next state
s_prime and reward r. It does not affect the agent location!

act(a) executes action a, i.e., it calls transition_function() and then actually
moves the agent. It also checks for termination.

reset_agent () resets the agent to the start location, as given in the initial map. Also
sets the terminal attribute to False.

get_current_state() returns the current state of the environment.

print_state(s) prints the description what situation of the environment a particular
discrete state actually represents.

print_map() prints the current map of the environment.

When you execute the world.py script from the command line, which in Python will execute

the code below if __name

== ’__main__’:, found at the bottom of the file. This gives some

examples of the above methods. You can play around a little bit to familiarize yourself with the
environment.



1.2 The algorithm

For the exercises, you will implement two dynamic programming algorithms in the environ-
ment described above. You should use the dynamic_programming.py file, which contains the
DynamicProgramming () class.

e Attributes: An DynamicProgramming() object has two important attributes:

— V_s a value table. A value table is vector of length n_states. FEach element in
the vector stores the value estimate for the corresponding state index, ie. V(s =
4) =V_s[4]. If V_s = None, then you have not run any method yet to estimate the
optimal value table.

— Q_sa a state-action value table. A state-action value matrix of dimensions n_states x
n_actions. Actions are indexed according to World.actions = {up,down,left,right}.
For example, action up has index 0. Each element in the Q_sa matrix stores the value
estimate for the corresponding state-action, i.e., Q(s = 10,a = 0) =Q_sa[10,0]. If
Q_sa = Nomne, then you have not run any method yet to estimate the optimal value
table.

e Methods: An World object has several important methods.

— value_iteration(self,env,gamma=1.0,theta=0.001) should run value iteration
on the environment env (of class World). You should implement this function your-
self. Gamma is the discount factor, which you can leave at the default value of 1.0.
Theta is the threshold for convergence, which you can also leave at the default value
of 0.001.

— Q_value_iteration(self,env,gamma=1.0,theta=0.001) should run Q-value itera-
tion on the environment env (of class World). You should implement this function
yourself.

— execute_policy(self,env) executes a policy on environment env. This function is
partially implemented for you. You should implement estimation of the greedy policy.



1.3 Exercise: Dynamic Programming (coding)

Start by executing dynamic_programming.py. This executes the code under if __name__ ==
’__main__’: at the bottom of the script. You can manually execute a policy in the environment,

and familiarize yourself with the environment.
1. Value iteration:

a Implement value iteration, in the DynamicProgramming.value_iteration() method.
Do not change the function arguments or return statements. A start value table is already
provided for you: V_s = np.zeros(env.n_states). Your function should compute the
optimal value function, and at the end of the function store the optimal value table
in self.V_s. Include a print statement that prints the error in each iteration of your
algorithm.

b Implement DynamicProgramming.execute_policy() to execute the greedy policy based
on the value table V(s). You only need to implement the code segment below if table
== ’V’ and self.V_s is not Nomne:, which should set the greedy_action variable to
the greedy action (or one of the greedy actions) in the current state.

¢ Check whether your implementation works. Does our agent during execution follow the
optimal policy?

2. Q-value iteration

a Implement Q-value iteration in the DynamicProgramming.Q_value_iteration() method.
Do not change the function arguments or return statements. A start state-action value
table is already provided for you: Q_sa = np.zeros(env.n_states,env.n_actions).
Your function should compute the optimal state-action value function, and at the end of
the function store the optimal state-action value table in self.Q_sa.

b Implement DynamicProgramming.execute_policy() to execute the greedy policy based
on the state-action value table Q(s,a). You only need to implement the code seg-
ment below elif table == ’Q’ and self.Q_sa is not None:, which should set the



greedy_action variable to the greedy action (or one of the greedy actions) in the current
state.

¢ Check whether your implementation works. Does our agent during execution follow the
optimal policy?

3. Multiple goals

a Prison.txt only has a single goal. Design a new prison with multiple goals. The agent
should, form the start location, be able to reach both goals before the episode terminates.

b Run value iteration or Q-value iteration on your new environment, and describe what
behaviour you observe. May the goal that the agent picks alter when you change the
start location?




Reflection Exercises

. Reflection on Dynamic Programming;:

When you successfully implemented DP, you saw that it solves the problem very fast. The
problem to which we applied is was however quite small. Imagine we have a world of size
100x100, which can have 10.000 free agent locations. And imagine this more complex
world has 30 keys and doors.

a How many unique states does this new problem have? (Note: you should count every
possible combination of agent location and key possession)

b Imagine we use 32-bit floating numbers to store the values in the table, i.e., every value
estimate takes 32 bits, or 4 bytes, in memory. How much memory would we roughly need
to store the value table for this new problem in memory?

~

¢ Roughly how fast would you solve this problem on you laptop? Explain your answer.

\

d Explain the curse of dimensionality. What aspect of our problem definition causes the
exponential growth?




2. Comparison to search:
We may also compare Dynamic Programming to the search approaches you have previously
encountered.
Imagine we apply an iterative deepening tree search (i.e., no graph search, so we
do not detect whether we already encountered a state, but simply expand the tree in all
directions) to the example problem in prison.txt.

a FEstimate the time complexity of an iterative deepening tree search on the prison.tzt
problem (hint: first compute the depth of the shortest path towards the goal).

b Compare the time complexity of iterative deepening tree search to the time complexity you
empirically observed for dynamic programming on the prison problem. Which approach
1s faster?

¢ Compare the way Dynamic Programming stores the solution to the way tree/graph search
approaches store the solution. What could be a benefit of the DP representation, and what
could be a benefit of the tree/graph search representation?




