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Sequential decision making

Many recent AI breakthroughs use 
this formulation



Recap



Search = central theme in AI

Search in parameter/solution space

Recap: Symbolic AI & Search



Search = central theme in AI

Search in parameter/solution space

Recap: Symbolic AI & Search

In symbolic AI we 
focus on discrete 
solution spaces 
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What defines whether a particular point in solution space is preferable?

1. Optimality/fitness function

2. Constraints/logic to reduce
feasible region 

Recap: Symbolic AI & Search

parameter 1parameter 2

fitness
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Sequential problems:

Solution space has a natural ordering

- Usually sequential in time.
- Examples are shortest path problems.

Recap: Sequential problems



Sequential problems:

Solution space has a natural ordering

- Usually sequential in time.
- Examples are shortest path problems.

Recap: Sequential problems

Solution space are the actions we take 
(A-C, then C-E, then E-D, etc.)

Natural sequential ordering
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Directed Graphs

- Deterministic
- Single goal state

Today

Markov Decision Process

- Possibly stochastic
- Utility (multiple goals possible)



Part 1:

Markov Decision Process definition



Markov Decision Process = very generic formulation

Many of the sequential problems you have seen so far 
can be formulated as an MDP

MDP definition



Example problem



Example problem

In words:

- There are 5 states.
- We always start in state 1. 
- In every state we have 4 available actions (up, down, left, 

right).
- Action (up, down, etc.) moves agent in that direction.



Example problem

In words:

- There are 5 states.
- We always start in state 1. 
- In every state we have 4 available actions (up, down, left, 

right).
- Action (up, down, etc.) moves agent in that direction.

- When we move into a wall, we stay at the same location.
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- States 4 and 5 are terminal (episode ends). 
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Example problem

In words:

- There are 5 states.
- We always start in state 1. 
- In every state we have 4 available actions (up, down, left, 

right).
- Action (up, down, etc.) moves agent in that direction.

- When we move into a wall, we stay at the same location.
- State 3 is ‘slippery’. When we step on state 3, we have a 20% 

chance to slip to state 4. 
- States 4 and 5 are terminal (episode ends). 

- State 5 has reward of +20.
- State 4 has a penalty of -10. 
- Every other action has a penalty of -1. 

A lot of text! And computers prefer numbers!
We want a more systematic problem definition protocol



MDP definition

Symbol Description

1. State space S What are the possible observations? 

2. Action space A What are the possible actions? 

3. Transition function T(s’|s,a) How does the environment respond to my actions? 

4. Reward function R(s,a,s’) How good or bad is a certain transition?

5. Discount factor γ How much do we ignore long term benefit?

6. Initial state distribution p
0
(s) Where do we start? 
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In words:
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MDP definition: State + Action space

In words:

- There are 5 states.
- In every state we may move up, 

down, left or right. 

Formally:

- S = {1,2,3,4,5}
- A = {up,down,left,right} 

(which we assign 1,2,3,4 in a 
computer)

- Both are sets



MDP definition

Symbol Description

1. State space S What are the possible observations? 

2. Action space A What are the possible actions? 

3. Transition function T(s’|s,a) How does the environment respond to my actions? 

4. Reward function R(s,a,s’) How good or bad is a certain transition?

5. Discount factor γ How much do we ignore long term benefit?

6. Initial state distribution p
0
(s) Where do we start? 



MDP definition: Transition Function

In words:

- Action (up, down, etc.) moves agent in that 
direction.

- When we move into a wall, we stay at the same 
location.

- State 3 is ‘slippery’. When we step on state 3, 
we have a 20% chance to slip to state 4. 

- States 4 and 5 are terminal (episode ends). 



MDP definition: Transition Function

In words:

- Action (up, down, etc.) moves agent in that 
direction.

- When we move into a wall, we stay at the same 
location.

- State 3 is ‘slippery’. When we step on state 3, 
we have a 20% chance to slip to state 4. 

- States 4 and 5 are terminal (episode ends). 

Formally:

- T(s’|s,a), a conditional probability distribution
- T: S x A → p(S)
- Represented as table/array of size |S|x|A|x|S|  

(= here: 5 x 4 x 5)



MDP definition: Transition function

s a p(s’=1) p(s’=2) p(s’=3) p(s’=4) p(s’=5)

1 up 0 1 0 0 0

1 down 1 0 0 0 0

1 left 1 0 0 0 0

1 right 1 0 0 0 0

2 up 0 0 0.80 0.20 0

2 down 1 0 0 0 0

2 left 0 1 0 0 0

2 right 0 1 0 0 0

etc.



MDP definition: Transition function

s a p(s’=1) p(s’=2) p(s’=3) p(s’=4) p(s’=5)

1 up 0 1 0 0 0

1 down 1 0 0 0 0

1 left 1 0 0 0 0

1 right 1 0 0 0 0

2 up 0 0 0.80 0.20 0

2 down 1 0 0 0 0

2 left 0 1 0 0 0

2 right 0 1 0 0 0

etc.

- Action (up, down, etc.) moves agent in that direction.



MDP definition: Transition function
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1 up 0 1 0 0 0
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1 left 1 0 0 0 0

1 right 1 0 0 0 0

2 up 0 0 0.80 0.20 0
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etc.

- When we move into a wall, we stay at the same location.
-



MDP definition: Transition function

s a p(s’=1) p(s’=2) p(s’=3) p(s’=4) p(s’=5)

1 up 0 1 0 0 0

1 down 1 0 0 0 0

1 left 1 0 0 0 0

1 right 1 0 0 0 0

2 up 0 0 0.80 0.20 0

2 down 1 0 0 0 0

2 left 0 1 0 0 0

2 right 0 1 0 0 0

etc.
Probability distributions always sum to 1. 

- State 3 is ‘slippery’. 
-



MDP definition: Transition function

s a p(s’=1) p(s’=2) p(s’=3) p(s’=4) p(s’=5)

1 up 0 1 0 0 0

1 down 1 0 0 0 0

1 left 1 0 0 0 0

1 right 1 0 0 0 0

2 up 0 0 0.80 0.20 0

2 down 1 0 0 0 0

2 left 0 1 0 0 0

2 right 0 1 0 0 0

etc.
Probability distributions always sum to 1. 

If any action in the MDP can lead to multiple next states, the MDP is stochastic.
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MDP definition: Transition function

s a p(s’=1) p(s’=2) p(s’=3) p(s’=4) p(s’=5)

4 up 0 0 0 1 0

4 down 0 0 0 1 0

4 left 0 0 0 1 0

4 right 0 0 0 1 0

Terminal states (state 4 and 5) -- episode ends

Two perspectives:

1. No available actions.
2. Absorbing state: all actions lead back to same state with reward 0. 



MDP definition

Symbol Description

1. State space S What are the possible observations? 

2. Action space A What are the possible actions? 

3. Transition function T(s’|s,a) How does the environment respond to my actions? 

4. Reward function R(s,a,s’) How good or bad is a certain transition?

5. Discount factor γ How much do we ignore long term benefit?

6. Initial state distribution p
0
(s) Where do we start? 



MDP definition: Reward function

In words:

- State 5 has reward of +20.
- State 4 has a penalty of -10. 
- Every other action has a penalty of -1. 



MDP definition: Reward function

In words:

- State 5 has reward of +20.
- State 4 has a penalty of -10. 
- Every other action has a penalty of -1. 

Formally:

- R(s,a,s’): a function 
- What is the reward of taking action a in state s, 

and reaching state s’. 
- Again need table/array of size |S|x|A|x|S|  (= 

here 5 x 4 x 5)
- Each entry a reward (real number)



MDP definition: Reward function

s a s’ R(s,a,s’)

1 up 1 -1

1 up 2 -1

1 up 3 -1

1 up 4 -1

1 up 5 -1

.. .. .. ..

.. .. .. ..

3 left 5 +20
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.. .. .. ..

3 left 5 +20

Some transition not even possible. 
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- R(s’) (only which state we reach)



MDP definition: Reward function

s’ R(s’)

1 -1

2 -1

3 -1

4 -10

5 +20

Often R(s,a,s’) is defined as: 

- R(s,a) (only current state/action)
- R(s’) (only which state we reach)



MDP definition: Reward function

s’ R(s’)

1 -1

2 -1

3 -1

4 -10

5 +20

Often R(s,a,s’) is defined as: 

- R(s,a) (only current state/action)
- R(s’) (only which state we reach)

Cost minimization (often in path planning):

- Cost = negated reward, i.e.,  C(s,a,s’) = - R(s,a,s’)
- Then: cost minimization equivalent to reward maximization. 



MDP definition

Symbol Description

1. State space S What are the possible observations? 

2. Action space A What are the possible actions? 

3. Transition function T(s’|s,a) How does the environment respond to my actions? 

4. Reward function R(s,a,s’) How good or bad is a certain transition?

5. Discount factor γ How much do we ignore long term benefit?

6. Initial state distribution p
0
(s) Where do we start? 



MDP definition

Symbol Description

1. State space S What are the possible observations? 

2. Action space A What are the possible actions? 

3. Transition function T(s’|s,a) How does the environment respond to my actions? 

4. Reward function R(s,a,s’) How good or bad is a certain transition?

5. Discount factor γ How much do we ignore long term benefit?

6. Initial state distribution p
0
(s) Where do we start? 

γ is a scalar in [0,1]

We discuss this later



MDP definition

Symbol Description

1. State space S What are the possible observations? 

2. Action space A What are the possible actions? 

3. Transition function T(s’|s,a) How does the environment respond to my actions? 

4. Reward function R(s,a,s’) How good or bad is a certain transition?

5. Discount factor γ How much do we ignore long term benefit?

6. Initial state distribution p
0
(s) Where do we start? 



MDP definition: Initial State Distribution

In words:

- We always start in state 1. 



MDP definition: Initial State Distribution

In words:

- We always start in state 1. 

Formally:

- Probability distribution over S

s p0(s)

1 1

2 0

3 0

4 0

5 0



The future is independent of the past given the present

=

The present state gives all information about the system

Markov property

Markovian
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The future is independent of the past given the present

=

The present state gives all information about the system

Markov property

Markovian
Non-Markovian/ 

partially observable

Not for 
today



Policy: π(a|s)

- A conditional probability distribution: 
- For each state s, gives a probability distribution over the actions.
- π: S → p(A)

Policy: how to act in the MDP



Policy: π(a|s)

- A conditional probability distribution: 
- For each state s, gives a probability distribution over the actions.
- π: S → p(A)

- Not part of the MDP problem definition. 
- But actually our potential solution to the problem. 

Policy: how to act in the MDP



Policy: π(a|s)

Example:

Policy: how to act in the MDP

s π(a=up) π(a=down) π(a=left) π(s’=right)

1 0 0.5 0 0.5

2 1 0 0 0

3 0.3 0 0.3 0.4

4 - - - -

5 - - - -

Table of size |S|x|A|



Policy: π(a|s)

Example:

Policy: how to act in the MDP

State 4 and 5 
terminal, so no 
action possible.

s π(a=up) π(a=down) π(a=left) π(s’=right)

1 0 0.5 0 0.5

2 1 0 0 0

3 0.3 0 0.3 0.4

4 - - - -

5 - - - -



Policy: π(a|s)

Example:

Policy: how to act in the MDP

s π(a=up) π(a=down) π(a=left) π(s’=right)

1 0 1 0 0

2 1 0 0 0

3 0 0 1 0

4 - - - -

5 - - - -

Special case:

deterministic policy

(always select one 
action in a state)



Policy: π(a|s)

Example:

Policy: how to act in the MDP

s π(a=up) π(a=down) π(a=left) π(s’=right)

1 0 1 0 0

2 1 0 0 0

3 0 0 1 0

4 - - - -

5 - - - -

Special case:

deterministic policy

(always select one 
action in a state)

Write π(s), e.g.:

π(s=2)=”up”



MDP overview

Symbol Description

1. State space S What are the possible observations? 

2. Action space A What are the possible actions? 

3. Transition function T(s’|s,a) How does the environment respond to my actions? 

4. Reward function R(s,a,s’) How good or bad is a certain transition?

5. Discount factor γ How much do we ignore long term benefit?

6. Initial state distribution p
0
(s) Where do we start? 

Policy π(a|s) How do we act in the environment



Problem definition applicable to a variety of settings

MDP overview

Stochasticity Multiple goalsPath planning with 
single goal



Problem definition applicable to a variety of settings

MDP overview

Stochasticity Multiple goalsPath planning with 
single goal

Of course our goal is to find a good policy!

But how do we define “good”?



Part 2:

Cumulative return & Value



We can act in the MDP by taking actions. This generates a trace:

Here: subscripts are time index, e.g. r
0 

= R(s
0
,a

0
,s

1
)

Trace



We can act in the MDP by taking actions. This generates a trace:

Here: subscripts are time index, e.g. r
0 

= R(s
0
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0
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1
)

Example trace: 

Trace



We can act in the MDP by taking actions. This generates a trace:

Here: subscripts are time index, e.g. r
0 

= R(s
0
,a

0
,s

1
)

Example trace: 

There are many rewards in a trace

Trace



We want to get the highest total reward!

Cumulative reward (=return)

Return (= cumulative reward)



We want to get the highest total reward!

Cumulative reward (=return)

Return (= cumulative reward)

First 
reward

Second 
reward

Third 
reward



We want to get the highest total reward!

Cumulative reward (=return)

Return (= cumulative reward)

Future rewards discounted by γ∈ [0, 1]

We will mostly ignore discounting, and fix γ=1



We want to get the highest total reward!

Cumulative reward (=return)

= summation notation for cumulative reward

Return (= cumulative reward)



Example trace: 

Q: What is the cumulative reward of this trace (assume γ = 1.0)?

A: G
0
 = 

Return (= cumulative reward)

Hint:



Example trace: 

Q: What is the cumulative reward of this trace (assume γ = 1.0)?

A: G
0
 = -1 + 1.0 · -1 + 1.02 · 20 

= (-1) +  (-1) + 20 

= 18

Return (= cumulative reward)

Hint:



We will not always observe the same trace from a state:

(environment and policy can be stochastic)

Value
(= utility)

 the average cumulative reward we expected to get, 

when starting in state s, and following policy π

Value/Utility



Value (= expected cumulative reward)



Value (= expected cumulative reward)

Value of state s 
given policy π

Cumulative 
reward



Value (= expected cumulative reward)

Value of state s 
given policy π

Cumulative 
reward

Expectation over all traces induced by 
policy π and environment T



Definition

- Discrete variable X with 
distribution p(X)

- Expectation of function f(·) of X:

“ the average of a random variable”

Recap: Expectation

Example
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Simply weight every 
outcome 

by its probability of occuring 

Example



Definition

- Discrete variable X with 
distribution p(X)

- Expectation of function f(·) of X:

Recap: Expectation

Example

Q: Compute E[f(X)] 

A:
Simply weight every 

outcome 
by its probability of occuring 



Example

Q: Compute E[f(X)] 

A:

Definition

- Discrete variable X with 
distribution p(X)

- Expectation of function f(·) of X:

Recap: Expectation

Simply weight every 
outcome 

by its probability of occuring 



Value (= expected cumulative reward)

Sum over all traces, multiplied by their 
probability of occuring



Q: Imagine, given a certain policy π, we can get two traces from state s. 

- The first trace has return G=6 and occurs 60% of times.
- The second trace has return G = 9 and occurs 40% of times. 

Compute V(s)

Value (= expected cumulative reward)

Sum over all traces, multiplied by their 
probability of occuring



Q: Imagine, given a certain policy π, we can get two traces from state s. 

- The first trace has return G=6 and occurs 60% of times.
- The second trace has return G = 9 and occurs 40% of times. 

Compute V(s)

A: 0.6 · 6 + 0.4 · 9 = 3.6 + 3.6 = 7.2

Value (= expected cumulative reward)

Sum over all traces, multiplied by their 
probability of occuring



● Value is a function!

○ For every possible state s, there is one Vπ(s), e.g.:
○ Can be represented as a table. 

Value = function

s Vπ(s)

1 4.5

2 7.3

3 2.3

4 0

5 0



● Value is a function!

○ For every possible state s, there is one Vπ(s), e.g.:
○ Can be represented as a table. 

● Every policy has its own associated value function: Vπ(s)
○ We sometimes omit π for simplicity, and write V(s)

Value = function

s Vπ(s)

1 4.5

2 7.3

3 2.3

4 0

5 0



● Value is a function!

○ For every possible state s, there is one Vπ(s), e.g.:
○ Can be represented as a table. 

● Every policy has its own associated value function: Vπ(s)
○ We sometimes omit π for simplicity, and write V(s)

● The value of a terminal state is by definition 0!

Value = function

s Vπ(s)

1 4.5

2 7.3

3 2.3

4 0

5 0



State value

State-action value Q(s,a)



State value

State-action value

State-action value Q(s,a)



State value

State-action value

State-action value Q(s,a)

We also condition on the first action!



State values 

V(s)

Representation of V(s) and Q(s,a) in memory

s=1 V=3

s=2 -4

s=3 9

s=4 ...

s=5

Vector of size |S|



State values 

V(s)

Representation of V(s) and Q(s,a) in memory

s=1 V=3

s=2 -4

s=3 9

s=4 ...

s=5

a=up a=down a=left a=right

s=1 Q=5 3 ...

s=2 9 4 ...

s=3 4 2 ...

s=4 ... ...

s=5

State-action  values 

Q(s,a)

Vector of size |S| Matrix of size |S| x |A|



Q: Imagine, we are in state 3, take action “up”, and afterwards follow policy π.

- 20% of times we then observe a return of 10.
- 40% of times we then observe a return of -4.
- 40% of times we then observe a return of 2.

Compute Qπ(s=3,a=“up”)

A: 

Example computation of Q(s,a)

Hint



Q: Imagine, we are in state 3, take action “up”, and afterwards follow policy π.

- 20% of times we then observe a return of 10.
- 40% of times we then observe a return of -4.
- 40% of times we then observe a return of 2.

Compute Qπ(s=3,a=“up”)

A: Qπ(s=3,a=“up”) = 0.2 · 10 + 0.4 · (-4) + 0.4 · 2 

= 2 - 1.6 + 0.8

= 1.2

Example computation of Q(s,a)

Hint



Main idea of MDPs: we want to find a policy with the highest possible value

Optimal value function



Main idea of MDPs: we want to find a policy with the highest possible value

- Each possible policy has an associated value function. 

- Theorem: 
One of these possible value functions is better than all others, i.e., it is the 
optimal value function V*(s)

Optimal value function



Main idea of MDPs: we want to find a policy with the highest possible value

- Each possible policy has an associated value function. 

- Theorem: 
One of these possible value functions is better than all others, i.e., it is the 
optimal value function V*(s)

- A policy that achieves this optimal value function is an optimal policy π*(a|s)

Optimal value function and optimal policy



Main idea of MDPs: we want to find a policy with the highest possible value

- Each possible policy has an associated value function. 

- Theorem: 
One of these possible value functions is better than all others, i.e., it is the 
optimal value function V*(s)

- A policy that achieves this optimal value function is an optimal policy π*(a|s)

Optimal value function and optimal policy

We want to find π*(a|s) 

(or V*(s) / Q*(s,a)  )



Problem definition: Markov Decision Process (MDP)

Solution space: Policy π(a|s) 

Solution criterion: Value/utility (= expected cumulative reward)

Optimality: One optimal value function V*(s) / Q*(s,a),
achieved by the optimal policy π*(a|s) 

Summary



Problem definition: Markov Decision Process (MDP)

Solution space: Policy π(a|s) 

Solution criterion: Value/utility (= expected cumulative reward)

Optimality: One optimal value function V*(s) / Q*(s,a),
achieved by the optimal policy π*(a|s) 

Summary

After the break we will try to find π*(a|s) / V*(s) / Q*(s,a)



Break



Part 3:

Bellman Equation



Value function can be written as a recursive formula

Bellman Equation



Value function can be written as a recursive formula

Bellman Equation



Value function can be written as a recursive formula

Bellman Equation

Value at state s is a function of values at next states s’!



Value function can be written as a recursive formula

Bellman Equation

Bellman equation is a functional equation

(the unknown quantity is a function)



Bellman Equation

Bellman equation

Back-up diagram



Bellman Equation

Back-up diagram

Bellman equation



Bellman Equation

Back-up diagram

Bellman equation

If we knew V(s’),

we can compute V(s)

= 

“back-up”



Bellman Equation

V=4 V=2 V=1V=3

Example

Policy, transition function, rewards 
and next state value estimates: see 
picture

r=2 r=2 r=1r=1

π=0.6 π=0.4

T=0.5 T=0.5 T=0.5 T=0.5



Q: Compute V(s) (assume γ=1.0)

Bellman Equation

V=4 V=2 V=1V=3

Example

Policy, transition function, rewards 
and next state value estimates: see 
picture

Bellman equation:r=2 r=2 r=1r=1

π=0.6 π=0.4

T=0.5 T=0.5 T=0.5 T=0.5



Q: Compute V(s) (assume γ=1.0)

A: V(s) = 0.6*(0.5*(2 + 1.0*4) + 0.5*(1 + 1.0*2)) +
   0.4*(0.5*(2 + 1.0*3) + 0.5*(1 + 1.0*1))
= 0.6* 4.5 + 0.4*3.5 = 4.1

Bellman Equation

V=4 V=2 V=1V=3

Example

Policy, transition function, rewards 
and next state value estimates: see 
picture

Bellman equation:r=2 r=2 r=1r=1

π=0.6 π=0.4

T=0.5 T=0.5 T=0.5 T=0.5
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Bellman Equation for state-action values

Back-up diagram for V

Back-up diagram for Q
Essentially the same equation, only:

- Represent the function at different points. 
- Therefore the summation order in the Bellman 

equation switches. 
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Relation between V(s) and Q(s,a)
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- Are two ways of storing the same value function for a given π
- Can therefore be rewritten into eachother

Relation between V(s) and Q(s,a)

Q  →   V V  →  Q

Back-up 
diagram

Equation



Example: 

- Two actions in s
- Random policy
- Q(a=1|s) = 10
- Q(a=2|s) = 20

Question: Compute V(s)

Relation between V(s) and Q(s,a)



Example: 

- Two actions in s
- Random policy
- Q(a=1|s) = 10
- Q(a=2|s) = 20

Question: Compute V(s)

Relation between V(s) and Q(s,a)

Q to V equation

Q to V back-up diagram



Example: 

- Two actions in s
- Random policy
- Q(a=1|s) = 10
- Q(a=2|s) = 20

Question: Compute V(s)

Answer: 

V(s) = 0.5 * 10 + 0.5*20 = 15

Relation between V(s) and Q(s,a)

Q to V equation

Q to V back-up diagram



Part 4

Dynamic Programming



General concept (not only applicable to MDPs)

Key idea: 
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Key idea: 

- Break a large problem into smaller subproblems. 

- Efficiently store and reuse intermediate results. 

- Repeatedly solving the small subproblem solves the overall problem. 
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General concept (not only applicable to MDPs)

Key idea: 

- Break a large problem into smaller subproblems. 

- Efficiently store and reuse intermediate results. 

- Repeatedly solving the small subproblem solves the overall problem. 

In context of MDP: a central algorithm to solve for the optimal policy

Dynamic Programming



Iterate two procedure:

1) Given a policy, how do we find the associated value function? 

= policy evaluation: from π to Vπ(s)

Dynamic Programming



Iterate two procedure:

1) Given a policy, how do we find the associated value function? 

= policy evaluation: from π to Vπ(s)

2) Given the value function, how do we find an improved policy?

= policy improvement: from Vπ(s) to improved π

Dynamic Programming
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Dynamic Programming



Given a policy π, find associated value function Vπ(s)

Policy Evaluation



Given a policy π, find associated value function Vπ(s)

- Bellman equation:

- For every s we have one such equation. 
- Therefore: system of |S| linear equations.
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Given a policy π, find associated value function Vπ(s)

- Bellman equation:

- For every s we have one such equation. 
- Therefore: system of |S| linear equations.

- Can we analytically solve for V(s)? 
- Can be done, but only for small problems 
- (needs O(|S|3) ) matrix inverse)

Policy Evaluation



Given a policy π, find associated value function Vπ(s)

- Bellman equation:

- For every s we have one such equation. 
- Therefore: system of |S| linear equations.

- Can we analytically solve for V(s)? No
- Therefore: iterative solution

Policy Evaluation



Policy Evaluation

Full algorithm in lecture notes

We walk through an example step-by-step



Input: Policy

Example: In every state 50% “up” and 50% “left”. 

Policy Evaluation: example



Input: Policy

Example: In every state 50% “up” and 50% “left”. 

Policy Evaluation: example

s p(a=up) p(a=down) p(a=left) p(s’=right)

1 0.5 0 0.5 0

2 0.5 0 0.5 0

3 0.5 0 0.5 0

4 - - - -

5 - - - -

Terminal states do 
not have a policy



Initialisation: Value table

Example: 

Policy Evaluation: example

s V(s)

s=1 0

s=2 0

s=3 0

s=4 0

s=5 0



Initialisation: Value table

Example: 

Policy Evaluation: example

s V(s)

s=1 0

s=2 0

s=3 0

s=4 0

s=5 0
Initialize terminal states to 0



Initialisation: Value table

Example: 

Policy Evaluation: example

s V(s)

s=1 0

s=2 0

s=3 0

s=4 0

s=5 0

All other states can be 
randomly initialized



Initialisation: Value table

Example: 

Policy Evaluation: example

s V(s)

s=1 2

s=2 3

s=3 6

s=4 0

s=5 0

All other states can be 
randomly initialized



Algorithm: 
1. Loop through all states

2. Update each state according to Bellman equation

3. Repeat until convergence. 

Bellman update: 

Policy Evaluation: example



Algorithm: 
1. Loop through all states

2. Update each state according to Bellman equation

3. Repeat until convergence. 

Bellman update: 

Example: Policy --> 50% up, 50% left, assume γ = 1.0

Q: Update state 1?  

A: V(s=1) = 

Policy Evaluation

s V(s)

1 0

2 0

3 0

4 0

5 0



Algorithm: 
1. Loop through all states

2. Update each state according to Bellman equation

3. Repeat until convergence. 

Bellman update: 

Example: Policy --> 50% up, 50% left, assume γ = 1.0

Q: Update state 1?  

A: V(s=1) = 0.5 * ( -1 + 1.0 * 0) + 0.5 * (-1 + 1.0 * 0) = -1

Policy Evaluation

s V(s)

1 0

2 0

3 0

4 0

5 0



Algorithm: 
1. Loop through all states

2. Update each state according to Bellman equation

3. Repeat until convergence. 

Bellman update: 

Example: Policy --> 50% up, 50% left, assume γ = 1.0

Q: Update state 1?  

A: V(s=1) = 0.5 * ( -1 + 1.0 * 0) + 0.5 * (-1 + 1.0 * 0) = -1

Policy Evaluation

s V(s)

1 -1

2 0

3 0

4 0

5 0



Algorithm: 
1. Loop through all states

2. Update each state according to Bellman equation

3. Repeat until convergence. 

Bellman update: 

Example: Policy --> 50% up, 50% left, assume γ = 1.0

Q: Update state 2?  (stochastic!)

A: V(s=2) = 

Policy Evaluation

s V(s)

1 -1

2 0

3 0

4 0

5 0



Algorithm: 
1. Loop through all states

2. Update each state according to Bellman equation

3. Repeat until convergence. 

Bellman update: 

Example: Policy --> 50% up, 50% left, assume γ = 1.0

Q: Update state 2?  (stochastic!)

A: V(s=2) = 0.5 * (0.8 * (-1 + 1.0*0) + 0.2 * (-10 + 1.0 * 0) )
+ 0.5 * ( -1 + 1.0 * 0) 

      = 0.5*(-0.8 - 2.0) + 0.5*-1 = -1.4 - 0.5 = -1.9

Policy Evaluation

s V(s)

1 -1

2 0

3 0

4 0

5 0



Algorithm: 
1. Loop through all states

2. Update each state according to Bellman equation

3. Repeat until convergence. 

Bellman update: 

Example: Policy --> 50% up, 50% left, assume γ = 1.0

Q: Update state 2?  (stochastic!)

A: V(s=2) = 0.5 * (0.8 * (-1 + 1.0*0) + 0.2 * (-10 + 1.0 * 0) )
+ 0.5 * ( -1 + 1.0 * 0) 

      = 0.5*(-0.8 - 2.0) + 0.5*-1 = -1.4 - 0.5 = -1.9

Policy Evaluation

s V(s)

1 -1

2 -1.9

3 0

4 0

5 0



Algorithm: 
1. Loop through all states

2. Update each state according to Bellman equation

3. Repeat until convergence. 

Bellman update: 

Example: Policy --> 50% up, 50% left, assume γ = 1.0

Update state 3, update state 1, 2, 3, 1, 2, 3 etc. 

Policy Evaluation

s V(s)

1 -1

2 -1.9

3 0

4 0

5 0



Informal Python code:

Policy Evaluation



Informal Python code:

Policy Evaluation

Python indexing starts at 0
So V[0] refers to V(s=1)



Informal Python code:

Policy Evaluation

Python indexing starts at 0
So V[0] refers to V(s=1)

No stopping criteria (for readability)

30 epochs is more than enough to 
converge 



Informal Python code:

Policy Evaluation

Python indexing starts at 0
So V[0] refers to V(s=1)

No stopping criteria (for readability)

30 epochs is more than enough to 
converge 

Manually wrote this equation for every state

Only wrote the terms for which pi(a|s) and T(s’|s,a) are positive



Informal Python code (without stopping criteria):

Policy Evaluation

s V(s)

1 5.7

2 7.7

3 14.3

4 0

5 0

So this is the value function belonging 
to a 50/50 left/up policy



Dynamic Programming



Policy improvement

Given a Vπ(s), how can we find an improved π?



Given a Vπ(s), how can we find an improved π?

Main insights: 

- The optimal policy is always greedy. 
- There is always one action with the highest value 

(or multiple with equally high value estimate)
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Policy improvement:

- Simply acting greedy with respect to Vπ(s) or Qπ(s,a) 

For Q:

For V: 
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Given a Vπ(s), how can we find an improved π?

Main insights: 

- The optimal policy is always greedy. 
- There is always one action with the highest value 

(or multiple with equally high value estimate)

Policy improvement:

- Simply acting greedy with respect to Vπ(s) or Qπ(s,a) 

For Q:

For V: 

Policy improvement



Dynamic Programming



Dynamic Programming

Dynamic Programming 
= 

iterating policy evaluation 
and policy improvement



Dynamic Programming

Converges to the 
optimal value 

function and policy



Dynamic Programming

Converges to the 
optimal value 

function and policy
But how may we iterate both?



Policy iteration

Dynamic Programming

Value iteration

Two approaches



Policy iteration

1. Policy evaluation: until 
convergence

2. Policy improvement

Dynamic Programming

Value iteration

1. Policy evaluation: for 1 cycle

2. Policy improvement

Two approaches



Policy iteration

1. Policy evaluation: until 
convergence

2. Policy improvement

Dynamic Programming

Value iteration

1. Policy evaluation: for 1 cycle

2. Policy improvement

Two approaches

1 cycleconvergence



Policy iteration

1. Policy evaluation: until 
convergence

2. Policy improvement

Dynamic Programming

Value iteration

1. Policy evaluation: for 1 cycle

2. Policy improvement

Two approaches

See lecture notes 
(only conceptually)

Covered here 
(and for practical)



Loop until convergence:

1. Policy evaluation (1 cycle):

For all s in state space:

2. Policy improvement:

For all s in state space:

Value iteration



Loop until convergence:

1. Policy evaluation (1 cycle):

For all s in state space:

2. Policy improvement:

For all s in state space:

Value iteration

But:

 When we represent the 
policy in a smart way

-

we can write these two 
equations in one line!



Explicit policy representation:

Table with mapping:  s → p(A)

Implicit policies



Implicit policy representation:

Derive policy from value table (only store value table as solution)

Example:

Implicit policies
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Example:

Implicit policies

s V(s)

1 2

2 4

3 3

Value table
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Derive policy from value table (only store value table as solution)

Example:

Implicit policies
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1 2

2 4

3 3

Value table Policy (function of value table)

Example for greedy policy



Implicit policy representation:

Derive policy from value table (only store value table as solution)

Example:

Implicit policies

State-action value table Policy (function of value table)

a=up a=down ..

s=1 Q(s,a)=5 3

s=2 9 4

s=3 4 2



Implicit policy representation:

Derive policy from value table (only store value table as solution)

Example:

Implicit policies

Policy (function of value table)

Example for greedy policy

a=up a=down ..

s=1 Q(s,a)=5 3

s=2 9 4

s=3 4 2

State-action value table



Two ingredients:

- Alternate policy evaluation (1 sweep) and policy improvement (1 sweep)
- Implicitly represent the policy with a value table.

Effect: can write the update as a single equation!

Value iteration



Two ingredients:
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Algorithm: 

Loop until convergence:

For each s in state space:
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Two ingredients:

- Alternate policy evaluation (1 sweep) and policy improvement (1 sweep)
- Implicitly represent the policy with a value table.

Effect: can write the update as a single equation!

Algorithm: 

Loop until convergence:

For each s in state space:

Returns optimal value function V*(s)!

Value iteration
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Two ingredients:

- Alternate policy evaluation (1 sweep) and policy improvement (1 sweep)
- Implicitly represent the policy with a value table.

Effect: can write the update as a single equation!

Algorithm: 

Loop until convergence:

For each s in state space:

Returns optimal value function V*(s)!

Value iteration

Back-up diagram

max

Very straightforward algorithm!



Value iteration

Full pseudocode in lecture notes



= same algorithm but with state-action values!

Q-Value iteration



= same algorithm but with state-action values!

Algorithm

Loop until convergence:

For each s in state space:

For each a in action space:

Returns optimal state-action value function Q*(s,a)!

Q-Value iteration



= same algorithm but with state-action values!

Algorithm

Loop until convergence:

For each s in state space:

For each a in action space:

Returns optimal state-action value function Q*(s,a)!

Q-Value iteration

Back-up diagram

max



Q-Value iteration

Full pseudocode in lecture notes



Small problem: can reason what optimal value should be

Value iteration example

s V*(s)

1 ?

2 ?

3 ?

Value tableTask
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Small problem: can reason what optimal value should be

Q: Compute V*(s=3).

A: Best action = left 
This always reaches state 5
Reward = 20 and terminates (so V(5)=0)
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Small problem: can reason what optimal value should be

Q: Compute V*(s=3).

A: Best action = left 
This always reaches state 5
Reward = 20 and terminates (so V(5)=0)

V*(3) = 20 + 1.0 * 0 = 20 

Value iteration example

s V*(s)

1 ?

2 ?

3 ?

Value tableTask

Hints



Small problem: can reason what optimal value should be

Q: Compute V*(s=2).

Value iteration example

s V*(s)

1 ?

2 ?

3 20.0

Value tableTask

Hints



Small problem: can reason what optimal value should be

Q: Compute V*(s=2).

A: Best action = up 
80% reaches s=3 with r=-1
20% slips and reaches s=4 with r=-10

V*(2) = 0.8(-1 + 1.0*20) + 0.2(-10+1.0*0) = 13.2

Value iteration example

s V*(s)

1 ?

2 ?

3 20.0

Value tableTask

Hints



Small problem: can reason what optimal value should be

Q: Compute V*(s=1).

Value iteration example

s V*(s)

1 ?

2 13.2

3 20.0

Value tableTask

Hints



Small problem: can reason what optimal value should be

Q: Compute V*(s=1).

A: Best action = up 
Always reaches s=2, with r=-1.

V*(1) = -1 + 1.0 * 13.2 = 12.2 

Value iteration example

s V*(s)

1 ?

2 13.2

3 20.0

Value tableTask

Hints



Does value iteration give the same solution?

Value iteration example

s V*(s)

1 12.2

2 13.2

3 20.0

Value tableTask

Hints



Value iteration example



Value iteration example

Initialize value vector



Value iteration example

Manually wrote Bellman optimality equation

Only wrote the terms for which T(s’|s,a) is positive

Initialize value vector



Value iteration example

Yes! 
Exactly finds the same optimal values



Value iteration example

Yes! 
Exactly finds the same optimal values

Principle works - applicable to larger problems



Value iteration example

Sloppy example:

- No generic code (separation of algorithm and environment)
- No stopping criteria



Value iteration example

Sloppy example:

- No generic code (separation of algorithm and environment)
- No stopping criteria

We will do this the right 
way in the assignment
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Tree/Graph Search

- Local solution

Dynamic Programming

- Global solution

Discussion: DP versus Search

s V*(s)

1 12.2

2 13.2



Tree/Graph Search

- Local solution

- Memory requirement varies, 
but usually lower than DP

Dynamic Programming

- Global solution

- High memory requirement:
O(|S|) or O(|S|x|A|)

Discussion: DP versus Search

s V*(s)

1 12.2

2 13.2



Tree/Graph Search

- Local solution

- Memory requirement varies, 
but usually lower than DP

Dynamic Programming

- Global solution

- High memory requirement:
O(|S|) or O(|S|x|A|)

Discussion: DP versus Search

s V*(s)

1 12.2

2 13.2

Curse of dimensionality: 
Number of unique states grows exponentially in problem size (number of variables that the state 
describes) 



Imagine our task is a bit more complex, like a game of Tic-tac-toe. 

- A state represents a combination of 9 variables (each location on the board)
- Each variable can take three values (X, O or empty)
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Imagine our task is a bit more complex, like a game of Tic-tac-toe. 

- A state represents a combination of 9 variables (each location on the board)
- Each variable can take three values (X, O or empty)

Q: How many unique states are there? 

A: 39 = 19.683

Now imagine we make the board slightly bigger, to 4x4

Q: How many unique states are there now?

A: 

Curse of dimensionality



Imagine our task is a bit more complex, like a game of Tic-tac-toe. 

- A state represents a combination of 9 variables (each location on the board)
- Each variable can take three values (X, O or empty)

Q: How many unique states are there? 

A: 39 = 19.683

Now imagine we make the board slightly bigger, to 4x4

Q: How many unique states are there now?

A: 316 = 43.046.721  

The size of the state space grows exponentially in the number of underlying variables. 

Curse of dimensionality
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- Markov Decision Process
- Powerful (generic) paradigm to define sequential tasks.  
- Can deal with multiple goals (and trading-off between them through 

utility/value).
- Can deal with stochastic dynamics. 

- Bellman equation
- Recursive relation between state/state-action values.
- Fundamental principle below many MDP algorithms.

- Dynamic Programming
- Group of algorithms to solve for the optimal value/policy in a MDP. 
- Fundamental ideas for most other MDP algorithms.

Summary
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- Cumulative reward & value
- Bellman equation
- Dynamic programming

Summary

Key principle below:

- Search & planning
- Reinforcement learning (not in this course)
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- Cumulative reward & value
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- Dynamic programming
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- MDP formulation
- Cumulative reward & value
- Bellman equation
- Dynamic programming

A lot of current AI research is into MDP problem formulations

Summary

Key principle below:

- Search & planning
- Reinforcement learning (not in this course)

 e.g., AlphaGo Zero:

Solution = search (MCTS) + learning

Line between symbolic and subsymbolic 
AI can be thin!



1. Study the lecture notes
a. Summarizes the material of this lecture
b. Gives extra explanation and examples

Assignment



1. Study the lecture notes
a. Summarizes the material of this lecture
b. Gives extra explanation and examples

2. Make MDP assignment
a. Coding exercises: implement value iteration and Q-value iteration
b. Reflection exercises: answer in pdf. 

Good luck!

Assignment


