
Markov Decision Process

Course: Symbolic AI, Leiden University

Lecturer: Thomas Moerland

1. Markov Decision Process definition

2. Cumulative reward and value

Break

3. Bellman Equation

4. Dynamic Programming

Content

Sequential decision making

Many key problems in AI

Sequential decision making

Many recent AI breakthroughs use
this formulation

Recap

Search = central theme in AI

Search in parameter/solution space

Recap: Symbolic AI & Search

Search = central theme in AI

Search in parameter/solution space

Recap: Symbolic AI & Search

In symbolic AI we
focus on discrete
solution spaces

What defines whether a particular point in solution space is preferable?

1. Optimality/fitness function

Recap: Symbolic AI & Search

What defines whether a particular point in solution space is preferable?

1. Optimality/fitness function

Recap: Symbolic AI & Search

parameter 1parameter 2

fitness

What defines whether a particular point in solution space is preferable?

1. Optimality/fitness function

2. Constraints/logic to reduce
feasible region

Recap: Symbolic AI & Search

parameter 1parameter 2

fitness

Sequential problems:

Solution space has a natural ordering

Recap: Sequential problems

Sequential problems:

Solution space has a natural ordering

- Usually sequential in time.
- Examples are shortest path problems.

Recap: Sequential problems

Sequential problems:

Solution space has a natural ordering

- Usually sequential in time.
- Examples are shortest path problems.

Recap: Sequential problems

Solution space are the actions we take
(A-C, then C-E, then E-D, etc.)

Natural sequential ordering

Directed Graphs

- Deterministic
- Single goal state

Today

state

action

Directed Graphs

- Deterministic
- Single goal state

Today

Markov Decision Process

- Possibly stochastic
- Utility

Directed Graphs

- Deterministic
- Single goal state

Today

Markov Decision Process

- Possibly stochastic
- Utility

Directed Graphs

- Deterministic
- Single goal state

Today

Markov Decision Process

- Possibly stochastic
- Utility (multiple goals possible)

Part 1:

Markov Decision Process definition

Markov Decision Process = very generic formulation

Many of the sequential problems you have seen so far
can be formulated as an MDP

MDP definition

Example problem

Example problem

In words:

- There are 5 states.
- We always start in state 1.
- In every state we have 4 available actions (up, down, left,

right).
- Action (up, down, etc.) moves agent in that direction.

Example problem

In words:

- There are 5 states.
- We always start in state 1.
- In every state we have 4 available actions (up, down, left,

right).
- Action (up, down, etc.) moves agent in that direction.

- When we move into a wall, we stay at the same location.
- State 3 is ‘slippery’. When we step on state 3, we have a 20%

chance to slip to state 4.
- States 4 and 5 are terminal (episode ends).

Example problem

In words:

- There are 5 states.
- We always start in state 1.
- In every state we have 4 available actions (up, down, left,

right).
- Action (up, down, etc.) moves agent in that direction.

- When we move into a wall, we stay at the same location.
- State 3 is ‘slippery’. When we step on state 3, we have a 20%

chance to slip to state 4.
- States 4 and 5 are terminal (episode ends).

- State 5 has reward of +20.
- State 4 has a penalty of -10.
- Every other action has a penalty of -1.

Example problem

In words:

- There are 5 states.
- We always start in state 1.
- In every state we have 4 available actions (up, down, left,

right).
- Action (up, down, etc.) moves agent in that direction.

- When we move into a wall, we stay at the same location.
- State 3 is ‘slippery’. When we step on state 3, we have a 20%

chance to slip to state 4.
- States 4 and 5 are terminal (episode ends).

- State 5 has reward of +20.
- State 4 has a penalty of -10.
- Every other action has a penalty of -1.

A lot of text! And computers prefer numbers!
We want a more systematic problem definition protocol

MDP definition

Symbol Description

1. State space S What are the possible observations?

2. Action space A What are the possible actions?

3. Transition function T(s’|s,a) How does the environment respond to my actions?

4. Reward function R(s,a,s’) How good or bad is a certain transition?

5. Discount factor γ How much do we ignore long term benefit?

6. Initial state distribution p
0
(s) Where do we start?

MDP definition

Symbol Description

1. State space S What are the possible observations?

2. Action space A What are the possible actions?

3. Transition function T(s’|s,a) How does the environment respond to my actions?

4. Reward function R(s,a,s’) How good or bad is a certain transition?

5. Discount factor γ How much do we ignore long term benefit?

6. Initial state distribution p
0
(s) Where do we start?

MDP definition: State + Action space

In words:

- There are 5 states.
- In every state we may move up,

down, left or right.

MDP definition: State + Action space

In words:

- There are 5 states.
- In every state we may move up,

down, left or right.

Formally:

- S = {1,2,3,4,5}
- A = {up,down,left,right}

(which we assign 1,2,3,4 in a
computer)

- Both are sets

MDP definition

Symbol Description

1. State space S What are the possible observations?

2. Action space A What are the possible actions?

3. Transition function T(s’|s,a) How does the environment respond to my actions?

4. Reward function R(s,a,s’) How good or bad is a certain transition?

5. Discount factor γ How much do we ignore long term benefit?

6. Initial state distribution p
0
(s) Where do we start?

MDP definition: Transition Function

In words:

- Action (up, down, etc.) moves agent in that
direction.

- When we move into a wall, we stay at the same
location.

- State 3 is ‘slippery’. When we step on state 3,
we have a 20% chance to slip to state 4.

- States 4 and 5 are terminal (episode ends).

MDP definition: Transition Function

In words:

- Action (up, down, etc.) moves agent in that
direction.

- When we move into a wall, we stay at the same
location.

- State 3 is ‘slippery’. When we step on state 3,
we have a 20% chance to slip to state 4.

- States 4 and 5 are terminal (episode ends).

Formally:

- T(s’|s,a), a conditional probability distribution
- T: S x A → p(S)
- Represented as table/array of size |S|x|A|x|S|

(= here: 5 x 4 x 5)

MDP definition: Transition function

s a p(s’=1) p(s’=2) p(s’=3) p(s’=4) p(s’=5)

1 up 0 1 0 0 0

1 down 1 0 0 0 0

1 left 1 0 0 0 0

1 right 1 0 0 0 0

2 up 0 0 0.80 0.20 0

2 down 1 0 0 0 0

2 left 0 1 0 0 0

2 right 0 1 0 0 0

etc.

MDP definition: Transition function

s a p(s’=1) p(s’=2) p(s’=3) p(s’=4) p(s’=5)

1 up 0 1 0 0 0

1 down 1 0 0 0 0

1 left 1 0 0 0 0

1 right 1 0 0 0 0

2 up 0 0 0.80 0.20 0

2 down 1 0 0 0 0

2 left 0 1 0 0 0

2 right 0 1 0 0 0

etc.

- Action (up, down, etc.) moves agent in that direction.

MDP definition: Transition function

s a p(s’=1) p(s’=2) p(s’=3) p(s’=4) p(s’=5)

1 up 0 1 0 0 0

1 down 1 0 0 0 0

1 left 1 0 0 0 0

1 right 1 0 0 0 0

2 up 0 0 0.80 0.20 0

2 down 1 0 0 0 0

2 left 0 1 0 0 0

2 right 0 1 0 0 0

etc.

- When we move into a wall, we stay at the same location.
-

MDP definition: Transition function

s a p(s’=1) p(s’=2) p(s’=3) p(s’=4) p(s’=5)

1 up 0 1 0 0 0

1 down 1 0 0 0 0

1 left 1 0 0 0 0

1 right 1 0 0 0 0

2 up 0 0 0.80 0.20 0

2 down 1 0 0 0 0

2 left 0 1 0 0 0

2 right 0 1 0 0 0

etc.
Probability distributions always sum to 1.

- State 3 is ‘slippery’.
-

MDP definition: Transition function

s a p(s’=1) p(s’=2) p(s’=3) p(s’=4) p(s’=5)

1 up 0 1 0 0 0

1 down 1 0 0 0 0

1 left 1 0 0 0 0

1 right 1 0 0 0 0

2 up 0 0 0.80 0.20 0

2 down 1 0 0 0 0

2 left 0 1 0 0 0

2 right 0 1 0 0 0

etc.
Probability distributions always sum to 1.

If any action in the MDP can lead to multiple next states, the MDP is stochastic.

MDP definition: Transition function

Terminal states (state 4 and 5) -- episode ends

Two perspectives:

MDP definition: Transition function

Terminal states (state 4 and 5) -- episode ends

Two perspectives:

1. No available actions.

MDP definition: Transition function

s a p(s’=1) p(s’=2) p(s’=3) p(s’=4) p(s’=5)

4 up 0 0 0 1 0

4 down 0 0 0 1 0

4 left 0 0 0 1 0

4 right 0 0 0 1 0

Terminal states (state 4 and 5) -- episode ends

Two perspectives:

1. No available actions.
2. Absorbing state: all actions lead back to same state with reward 0.

MDP definition

Symbol Description

1. State space S What are the possible observations?

2. Action space A What are the possible actions?

3. Transition function T(s’|s,a) How does the environment respond to my actions?

4. Reward function R(s,a,s’) How good or bad is a certain transition?

5. Discount factor γ How much do we ignore long term benefit?

6. Initial state distribution p
0
(s) Where do we start?

MDP definition: Reward function

In words:

- State 5 has reward of +20.
- State 4 has a penalty of -10.
- Every other action has a penalty of -1.

MDP definition: Reward function

In words:

- State 5 has reward of +20.
- State 4 has a penalty of -10.
- Every other action has a penalty of -1.

Formally:

- R(s,a,s’): a function
- What is the reward of taking action a in state s,

and reaching state s’.
- Again need table/array of size |S|x|A|x|S| (=

here 5 x 4 x 5)
- Each entry a reward (real number)

MDP definition: Reward function

s a s’ R(s,a,s’)

1 up 1 -1

1 up 2 -1

1 up 3 -1

1 up 4 -1

1 up 5 -1

..

..

3 left 5 +20

MDP definition: Reward function

s a s’ R(s,a,s’)

1 up 1 -1

1 up 2 -1

1 up 3 -1

1 up 4 -1

1 up 5 -1

..

..

3 left 5 +20

Some transition not even possible.

MDP definition: Reward function

s a s’ R(s,a,s’)

1 up 1 -1

1 up 2 -1

1 up 3 -1

1 up 4 -1

1 up 5 -1

..

..

3 left 5 +20

Often R(s,a,s’) is defined as:

- R(s,a) (only current state/action)
- R(s’) (only which state we reach)

MDP definition: Reward function

s’ R(s’)

1 -1

2 -1

3 -1

4 -10

5 +20

Often R(s,a,s’) is defined as:

- R(s,a) (only current state/action)
- R(s’) (only which state we reach)

MDP definition: Reward function

s’ R(s’)

1 -1

2 -1

3 -1

4 -10

5 +20

Often R(s,a,s’) is defined as:

- R(s,a) (only current state/action)
- R(s’) (only which state we reach)

Cost minimization (often in path planning):

- Cost = negated reward, i.e., C(s,a,s’) = - R(s,a,s’)
- Then: cost minimization equivalent to reward maximization.

MDP definition

Symbol Description

1. State space S What are the possible observations?

2. Action space A What are the possible actions?

3. Transition function T(s’|s,a) How does the environment respond to my actions?

4. Reward function R(s,a,s’) How good or bad is a certain transition?

5. Discount factor γ How much do we ignore long term benefit?

6. Initial state distribution p
0
(s) Where do we start?

MDP definition

Symbol Description

1. State space S What are the possible observations?

2. Action space A What are the possible actions?

3. Transition function T(s’|s,a) How does the environment respond to my actions?

4. Reward function R(s,a,s’) How good or bad is a certain transition?

5. Discount factor γ How much do we ignore long term benefit?

6. Initial state distribution p
0
(s) Where do we start?

γ is a scalar in [0,1]

We discuss this later

MDP definition

Symbol Description

1. State space S What are the possible observations?

2. Action space A What are the possible actions?

3. Transition function T(s’|s,a) How does the environment respond to my actions?

4. Reward function R(s,a,s’) How good or bad is a certain transition?

5. Discount factor γ How much do we ignore long term benefit?

6. Initial state distribution p
0
(s) Where do we start?

MDP definition: Initial State Distribution

In words:

- We always start in state 1.

MDP definition: Initial State Distribution

In words:

- We always start in state 1.

Formally:

- Probability distribution over S

s p0(s)

1 1

2 0

3 0

4 0

5 0

The future is independent of the past given the present

=

The present state gives all information about the system

Markov property

Markovian

The future is independent of the past given the present

=

The present state gives all information about the system

Markov property

Markovian
Non-Markovian/

partially observable

The future is independent of the past given the present

=

The present state gives all information about the system

Markov property

Markovian
Non-Markovian/

partially observable

Not for
today

Policy: π(a|s)

- A conditional probability distribution:
- For each state s, gives a probability distribution over the actions.
- π: S → p(A)

Policy: how to act in the MDP

Policy: π(a|s)

- A conditional probability distribution:
- For each state s, gives a probability distribution over the actions.
- π: S → p(A)

- Not part of the MDP problem definition.
- But actually our potential solution to the problem.

Policy: how to act in the MDP

Policy: π(a|s)

Example:

Policy: how to act in the MDP

s π(a=up) π(a=down) π(a=left) π(s’=right)

1 0 0.5 0 0.5

2 1 0 0 0

3 0.3 0 0.3 0.4

4 - - - -

5 - - - -

Table of size |S|x|A|

Policy: π(a|s)

Example:

Policy: how to act in the MDP

State 4 and 5
terminal, so no
action possible.

s π(a=up) π(a=down) π(a=left) π(s’=right)

1 0 0.5 0 0.5

2 1 0 0 0

3 0.3 0 0.3 0.4

4 - - - -

5 - - - -

Policy: π(a|s)

Example:

Policy: how to act in the MDP

s π(a=up) π(a=down) π(a=left) π(s’=right)

1 0 1 0 0

2 1 0 0 0

3 0 0 1 0

4 - - - -

5 - - - -

Special case:

deterministic policy

(always select one
action in a state)

Policy: π(a|s)

Example:

Policy: how to act in the MDP

s π(a=up) π(a=down) π(a=left) π(s’=right)

1 0 1 0 0

2 1 0 0 0

3 0 0 1 0

4 - - - -

5 - - - -

Special case:

deterministic policy

(always select one
action in a state)

Write π(s), e.g.:

π(s=2)=”up”

MDP overview

Symbol Description

1. State space S What are the possible observations?

2. Action space A What are the possible actions?

3. Transition function T(s’|s,a) How does the environment respond to my actions?

4. Reward function R(s,a,s’) How good or bad is a certain transition?

5. Discount factor γ How much do we ignore long term benefit?

6. Initial state distribution p
0
(s) Where do we start?

Policy π(a|s) How do we act in the environment

Problem definition applicable to a variety of settings

MDP overview

Stochasticity Multiple goalsPath planning with
single goal

Problem definition applicable to a variety of settings

MDP overview

Stochasticity Multiple goalsPath planning with
single goal

Of course our goal is to find a good policy!

But how do we define “good”?

Part 2:

Cumulative return & Value

We can act in the MDP by taking actions. This generates a trace:

Here: subscripts are time index, e.g. r
0

= R(s
0
,a

0
,s

1
)

Trace

We can act in the MDP by taking actions. This generates a trace:

Here: subscripts are time index, e.g. r
0

= R(s
0
,a

0
,s

1
)

Example trace:

Trace

We can act in the MDP by taking actions. This generates a trace:

Here: subscripts are time index, e.g. r
0

= R(s
0
,a

0
,s

1
)

Example trace:

There are many rewards in a trace

Trace

We want to get the highest total reward!

Cumulative reward (=return)

Return (= cumulative reward)

We want to get the highest total reward!

Cumulative reward (=return)

Return (= cumulative reward)

First
reward

Second
reward

Third
reward

We want to get the highest total reward!

Cumulative reward (=return)

Return (= cumulative reward)

Future rewards discounted by γ∈ [0, 1]

We will mostly ignore discounting, and fix γ=1

We want to get the highest total reward!

Cumulative reward (=return)

= summation notation for cumulative reward

Return (= cumulative reward)

Example trace:

Q: What is the cumulative reward of this trace (assume γ = 1.0)?

A: G
0
 =

Return (= cumulative reward)

Hint:

Example trace:

Q: What is the cumulative reward of this trace (assume γ = 1.0)?

A: G
0
 = -1 + 1.0 · -1 + 1.02 · 20

= (-1) + (-1) + 20

= 18

Return (= cumulative reward)

Hint:

We will not always observe the same trace from a state:

(environment and policy can be stochastic)

Value
(= utility)

 the average cumulative reward we expected to get,

when starting in state s, and following policy π

Value/Utility

Value (= expected cumulative reward)

Value (= expected cumulative reward)

Value of state s
given policy π

Cumulative
reward

Value (= expected cumulative reward)

Value of state s
given policy π

Cumulative
reward

Expectation over all traces induced by
policy π and environment T

Definition

- Discrete variable X with
distribution p(X)

- Expectation of function f(·) of X:

“ the average of a random variable”

Recap: Expectation

Example

Definition

- Discrete variable X with
distribution p(X)

- Expectation of function f(·) of X:

Recap: Expectation

Simply weight every
outcome

by its probability of occuring

Example

Definition

- Discrete variable X with
distribution p(X)

- Expectation of function f(·) of X:

Recap: Expectation

Example

Q: Compute E[f(X)]

A:
Simply weight every

outcome
by its probability of occuring

Example

Q: Compute E[f(X)]

A:

Definition

- Discrete variable X with
distribution p(X)

- Expectation of function f(·) of X:

Recap: Expectation

Simply weight every
outcome

by its probability of occuring

Value (= expected cumulative reward)

Sum over all traces, multiplied by their
probability of occuring

Q: Imagine, given a certain policy π, we can get two traces from state s.

- The first trace has return G=6 and occurs 60% of times.
- The second trace has return G = 9 and occurs 40% of times.

Compute V(s)

Value (= expected cumulative reward)

Sum over all traces, multiplied by their
probability of occuring

Q: Imagine, given a certain policy π, we can get two traces from state s.

- The first trace has return G=6 and occurs 60% of times.
- The second trace has return G = 9 and occurs 40% of times.

Compute V(s)

A: 0.6 · 6 + 0.4 · 9 = 3.6 + 3.6 = 7.2

Value (= expected cumulative reward)

Sum over all traces, multiplied by their
probability of occuring

● Value is a function!

○ For every possible state s, there is one Vπ(s), e.g.:
○ Can be represented as a table.

Value = function

s Vπ(s)

1 4.5

2 7.3

3 2.3

4 0

5 0

● Value is a function!

○ For every possible state s, there is one Vπ(s), e.g.:
○ Can be represented as a table.

● Every policy has its own associated value function: Vπ(s)
○ We sometimes omit π for simplicity, and write V(s)

Value = function

s Vπ(s)

1 4.5

2 7.3

3 2.3

4 0

5 0

● Value is a function!

○ For every possible state s, there is one Vπ(s), e.g.:
○ Can be represented as a table.

● Every policy has its own associated value function: Vπ(s)
○ We sometimes omit π for simplicity, and write V(s)

● The value of a terminal state is by definition 0!

Value = function

s Vπ(s)

1 4.5

2 7.3

3 2.3

4 0

5 0

State value

State-action value Q(s,a)

State value

State-action value

State-action value Q(s,a)

State value

State-action value

State-action value Q(s,a)

We also condition on the first action!

State values

V(s)

Representation of V(s) and Q(s,a) in memory

s=1 V=3

s=2 -4

s=3 9

s=4 ...

s=5

Vector of size |S|

State values

V(s)

Representation of V(s) and Q(s,a) in memory

s=1 V=3

s=2 -4

s=3 9

s=4 ...

s=5

a=up a=down a=left a=right

s=1 Q=5 3 ...

s=2 9 4 ...

s=3 4 2 ...

s=4

s=5

State-action values

Q(s,a)

Vector of size |S| Matrix of size |S| x |A|

Q: Imagine, we are in state 3, take action “up”, and afterwards follow policy π.

- 20% of times we then observe a return of 10.
- 40% of times we then observe a return of -4.
- 40% of times we then observe a return of 2.

Compute Qπ(s=3,a=“up”)

A:

Example computation of Q(s,a)

Hint

Q: Imagine, we are in state 3, take action “up”, and afterwards follow policy π.

- 20% of times we then observe a return of 10.
- 40% of times we then observe a return of -4.
- 40% of times we then observe a return of 2.

Compute Qπ(s=3,a=“up”)

A: Qπ(s=3,a=“up”) = 0.2 · 10 + 0.4 · (-4) + 0.4 · 2

= 2 - 1.6 + 0.8

= 1.2

Example computation of Q(s,a)

Hint

Main idea of MDPs: we want to find a policy with the highest possible value

Optimal value function

Main idea of MDPs: we want to find a policy with the highest possible value

- Each possible policy has an associated value function.

- Theorem:
One of these possible value functions is better than all others, i.e., it is the
optimal value function V*(s)

Optimal value function

Main idea of MDPs: we want to find a policy with the highest possible value

- Each possible policy has an associated value function.

- Theorem:
One of these possible value functions is better than all others, i.e., it is the
optimal value function V*(s)

- A policy that achieves this optimal value function is an optimal policy π*(a|s)

Optimal value function and optimal policy

Main idea of MDPs: we want to find a policy with the highest possible value

- Each possible policy has an associated value function.

- Theorem:
One of these possible value functions is better than all others, i.e., it is the
optimal value function V*(s)

- A policy that achieves this optimal value function is an optimal policy π*(a|s)

Optimal value function and optimal policy

We want to find π*(a|s)

(or V*(s) / Q*(s,a))

Problem definition: Markov Decision Process (MDP)

Solution space: Policy π(a|s)

Solution criterion: Value/utility (= expected cumulative reward)

Optimality: One optimal value function V*(s) / Q*(s,a),
achieved by the optimal policy π*(a|s)

Summary

Problem definition: Markov Decision Process (MDP)

Solution space: Policy π(a|s)

Solution criterion: Value/utility (= expected cumulative reward)

Optimality: One optimal value function V*(s) / Q*(s,a),
achieved by the optimal policy π*(a|s)

Summary

After the break we will try to find π*(a|s) / V*(s) / Q*(s,a)

Break

Part 3:

Bellman Equation

Value function can be written as a recursive formula

Bellman Equation

Value function can be written as a recursive formula

Bellman Equation

Value function can be written as a recursive formula

Bellman Equation

Value at state s is a function of values at next states s’!

Value function can be written as a recursive formula

Bellman Equation

Bellman equation is a functional equation

(the unknown quantity is a function)

Bellman Equation

Bellman equation

Back-up diagram

Bellman Equation

Back-up diagram

Bellman equation

Bellman Equation

Back-up diagram

Bellman equation

If we knew V(s’),

we can compute V(s)

=

“back-up”

Bellman Equation

V=4 V=2 V=1V=3

Example

Policy, transition function, rewards
and next state value estimates: see
picture

r=2 r=2 r=1r=1

π=0.6 π=0.4

T=0.5 T=0.5 T=0.5 T=0.5

Q: Compute V(s) (assume γ=1.0)

Bellman Equation

V=4 V=2 V=1V=3

Example

Policy, transition function, rewards
and next state value estimates: see
picture

Bellman equation:r=2 r=2 r=1r=1

π=0.6 π=0.4

T=0.5 T=0.5 T=0.5 T=0.5

Q: Compute V(s) (assume γ=1.0)

A: V(s) = 0.6*(0.5*(2 + 1.0*4) + 0.5*(1 + 1.0*2)) +
 0.4*(0.5*(2 + 1.0*3) + 0.5*(1 + 1.0*1))
= 0.6* 4.5 + 0.4*3.5 = 4.1

Bellman Equation

V=4 V=2 V=1V=3

Example

Policy, transition function, rewards
and next state value estimates: see
picture

Bellman equation:r=2 r=2 r=1r=1

π=0.6 π=0.4

T=0.5 T=0.5 T=0.5 T=0.5

Bellman Equation for state-action values

Back-up diagram for V

Bellman Equation for state-action values

Back-up diagram for V

Back-up diagram for Q

Bellman Equation for state-action values

Back-up diagram for V

Back-up diagram for Q
Essentially the same equation, only:

- Represent the function at different points.
- Therefore the summation order in the Bellman

equation switches.

- Are two ways of storing the same value function for a given π
- Can therefore be rewritten into eachother

Relation between V(s) and Q(s,a)

- Are two ways of storing the same value function for a given π
- Can therefore be rewritten into eachother

Relation between V(s) and Q(s,a)

Q → V V → Q

Back-up
diagram

Equation

- Are two ways of storing the same value function for a given π
- Can therefore be rewritten into eachother

Relation between V(s) and Q(s,a)

Q → V V → Q

Back-up
diagram

Equation

- Are two ways of storing the same value function for a given π
- Can therefore be rewritten into eachother

Relation between V(s) and Q(s,a)

Q → V V → Q

Back-up
diagram

Equation

Example:

- Two actions in s
- Random policy
- Q(a=1|s) = 10
- Q(a=2|s) = 20

Question: Compute V(s)

Relation between V(s) and Q(s,a)

Example:

- Two actions in s
- Random policy
- Q(a=1|s) = 10
- Q(a=2|s) = 20

Question: Compute V(s)

Relation between V(s) and Q(s,a)

Q to V equation

Q to V back-up diagram

Example:

- Two actions in s
- Random policy
- Q(a=1|s) = 10
- Q(a=2|s) = 20

Question: Compute V(s)

Answer:

V(s) = 0.5 * 10 + 0.5*20 = 15

Relation between V(s) and Q(s,a)

Q to V equation

Q to V back-up diagram

Part 4

Dynamic Programming

General concept (not only applicable to MDPs)

Key idea:

Dynamic Programming

General concept (not only applicable to MDPs)

Key idea:

- Break a large problem into smaller subproblems.

- Efficiently store and reuse intermediate results.

- Repeatedly solving the small subproblem solves the overall problem.

Dynamic Programming

General concept (not only applicable to MDPs)

Key idea:

- Break a large problem into smaller subproblems.

- Efficiently store and reuse intermediate results.

- Repeatedly solving the small subproblem solves the overall problem.

In context of MDP: a central algorithm to solve for the optimal policy

Dynamic Programming

Iterate two procedure:

1) Given a policy, how do we find the associated value function?

= policy evaluation: from π to Vπ(s)

Dynamic Programming

Iterate two procedure:

1) Given a policy, how do we find the associated value function?

= policy evaluation: from π to Vπ(s)

2) Given the value function, how do we find an improved policy?

= policy improvement: from Vπ(s) to improved π

Dynamic Programming

Dynamic Programming

Dynamic Programming

Dynamic Programming

Given a policy π, find associated value function Vπ(s)

Policy Evaluation

Given a policy π, find associated value function Vπ(s)

- Bellman equation:

- For every s we have one such equation.
- Therefore: system of |S| linear equations.

Policy Evaluation

Given a policy π, find associated value function Vπ(s)

- Bellman equation:

- For every s we have one such equation.
- Therefore: system of |S| linear equations.

- Can we analytically solve for V(s)?
- Can be done, but only for small problems
- (needs O(|S|3)) matrix inverse)

Policy Evaluation

Given a policy π, find associated value function Vπ(s)

- Bellman equation:

- For every s we have one such equation.
- Therefore: system of |S| linear equations.

- Can we analytically solve for V(s)? No
- Therefore: iterative solution

Policy Evaluation

Policy Evaluation

Full algorithm in lecture notes

We walk through an example step-by-step

Input: Policy

Example: In every state 50% “up” and 50% “left”.

Policy Evaluation: example

Input: Policy

Example: In every state 50% “up” and 50% “left”.

Policy Evaluation: example

s p(a=up) p(a=down) p(a=left) p(s’=right)

1 0.5 0 0.5 0

2 0.5 0 0.5 0

3 0.5 0 0.5 0

4 - - - -

5 - - - -

Terminal states do
not have a policy

Initialisation: Value table

Example:

Policy Evaluation: example

s V(s)

s=1 0

s=2 0

s=3 0

s=4 0

s=5 0

Initialisation: Value table

Example:

Policy Evaluation: example

s V(s)

s=1 0

s=2 0

s=3 0

s=4 0

s=5 0
Initialize terminal states to 0

Initialisation: Value table

Example:

Policy Evaluation: example

s V(s)

s=1 0

s=2 0

s=3 0

s=4 0

s=5 0

All other states can be
randomly initialized

Initialisation: Value table

Example:

Policy Evaluation: example

s V(s)

s=1 2

s=2 3

s=3 6

s=4 0

s=5 0

All other states can be
randomly initialized

Algorithm:
1. Loop through all states

2. Update each state according to Bellman equation

3. Repeat until convergence.

Bellman update:

Policy Evaluation: example

Algorithm:
1. Loop through all states

2. Update each state according to Bellman equation

3. Repeat until convergence.

Bellman update:

Example: Policy --> 50% up, 50% left, assume γ = 1.0

Q: Update state 1?

A: V(s=1) =

Policy Evaluation

s V(s)

1 0

2 0

3 0

4 0

5 0

Algorithm:
1. Loop through all states

2. Update each state according to Bellman equation

3. Repeat until convergence.

Bellman update:

Example: Policy --> 50% up, 50% left, assume γ = 1.0

Q: Update state 1?

A: V(s=1) = 0.5 * (-1 + 1.0 * 0) + 0.5 * (-1 + 1.0 * 0) = -1

Policy Evaluation

s V(s)

1 0

2 0

3 0

4 0

5 0

Algorithm:
1. Loop through all states

2. Update each state according to Bellman equation

3. Repeat until convergence.

Bellman update:

Example: Policy --> 50% up, 50% left, assume γ = 1.0

Q: Update state 1?

A: V(s=1) = 0.5 * (-1 + 1.0 * 0) + 0.5 * (-1 + 1.0 * 0) = -1

Policy Evaluation

s V(s)

1 -1

2 0

3 0

4 0

5 0

Algorithm:
1. Loop through all states

2. Update each state according to Bellman equation

3. Repeat until convergence.

Bellman update:

Example: Policy --> 50% up, 50% left, assume γ = 1.0

Q: Update state 2? (stochastic!)

A: V(s=2) =

Policy Evaluation

s V(s)

1 -1

2 0

3 0

4 0

5 0

Algorithm:
1. Loop through all states

2. Update each state according to Bellman equation

3. Repeat until convergence.

Bellman update:

Example: Policy --> 50% up, 50% left, assume γ = 1.0

Q: Update state 2? (stochastic!)

A: V(s=2) = 0.5 * (0.8 * (-1 + 1.0*0) + 0.2 * (-10 + 1.0 * 0))
+ 0.5 * (-1 + 1.0 * 0)

 = 0.5*(-0.8 - 2.0) + 0.5*-1 = -1.4 - 0.5 = -1.9

Policy Evaluation

s V(s)

1 -1

2 0

3 0

4 0

5 0

Algorithm:
1. Loop through all states

2. Update each state according to Bellman equation

3. Repeat until convergence.

Bellman update:

Example: Policy --> 50% up, 50% left, assume γ = 1.0

Q: Update state 2? (stochastic!)

A: V(s=2) = 0.5 * (0.8 * (-1 + 1.0*0) + 0.2 * (-10 + 1.0 * 0))
+ 0.5 * (-1 + 1.0 * 0)

 = 0.5*(-0.8 - 2.0) + 0.5*-1 = -1.4 - 0.5 = -1.9

Policy Evaluation

s V(s)

1 -1

2 -1.9

3 0

4 0

5 0

Algorithm:
1. Loop through all states

2. Update each state according to Bellman equation

3. Repeat until convergence.

Bellman update:

Example: Policy --> 50% up, 50% left, assume γ = 1.0

Update state 3, update state 1, 2, 3, 1, 2, 3 etc.

Policy Evaluation

s V(s)

1 -1

2 -1.9

3 0

4 0

5 0

Informal Python code:

Policy Evaluation

Informal Python code:

Policy Evaluation

Python indexing starts at 0
So V[0] refers to V(s=1)

Informal Python code:

Policy Evaluation

Python indexing starts at 0
So V[0] refers to V(s=1)

No stopping criteria (for readability)

30 epochs is more than enough to
converge

Informal Python code:

Policy Evaluation

Python indexing starts at 0
So V[0] refers to V(s=1)

No stopping criteria (for readability)

30 epochs is more than enough to
converge

Manually wrote this equation for every state

Only wrote the terms for which pi(a|s) and T(s’|s,a) are positive

Informal Python code (without stopping criteria):

Policy Evaluation

s V(s)

1 5.7

2 7.7

3 14.3

4 0

5 0

So this is the value function belonging
to a 50/50 left/up policy

Dynamic Programming

Policy improvement

Given a Vπ(s), how can we find an improved π?

Given a Vπ(s), how can we find an improved π?

Main insights:

- The optimal policy is always greedy.
- There is always one action with the highest value

(or multiple with equally high value estimate)

Policy improvement

Given a Vπ(s), how can we find an improved π?

Main insights:

- The optimal policy is always greedy.
- There is always one action with the highest value

(or multiple with equally high value estimate)

Policy improvement:

- Simply acting greedy with respect to Vπ(s) or Qπ(s,a)

For Q:

For V:

Policy improvement

Given a Vπ(s), how can we find an improved π?

Main insights:

- The optimal policy is always greedy.
- There is always one action with the highest value

(or multiple with equally high value estimate)

Policy improvement:

- Simply acting greedy with respect to Vπ(s) or Qπ(s,a)

For Q:

For V:

Policy improvement

Given a Vπ(s), how can we find an improved π?

Main insights:

- The optimal policy is always greedy.
- There is always one action with the highest value

(or multiple with equally high value estimate)

Policy improvement:

- Simply acting greedy with respect to Vπ(s) or Qπ(s,a)

For Q:

For V:

Policy improvement

Dynamic Programming

Dynamic Programming

Dynamic Programming
=

iterating policy evaluation
and policy improvement

Dynamic Programming

Converges to the
optimal value

function and policy

Dynamic Programming

Converges to the
optimal value

function and policy
But how may we iterate both?

Policy iteration

Dynamic Programming

Value iteration

Two approaches

Policy iteration

1. Policy evaluation: until
convergence

2. Policy improvement

Dynamic Programming

Value iteration

1. Policy evaluation: for 1 cycle

2. Policy improvement

Two approaches

Policy iteration

1. Policy evaluation: until
convergence

2. Policy improvement

Dynamic Programming

Value iteration

1. Policy evaluation: for 1 cycle

2. Policy improvement

Two approaches

1 cycleconvergence

Policy iteration

1. Policy evaluation: until
convergence

2. Policy improvement

Dynamic Programming

Value iteration

1. Policy evaluation: for 1 cycle

2. Policy improvement

Two approaches

See lecture notes
(only conceptually)

Covered here
(and for practical)

Loop until convergence:

1. Policy evaluation (1 cycle):

For all s in state space:

2. Policy improvement:

For all s in state space:

Value iteration

Loop until convergence:

1. Policy evaluation (1 cycle):

For all s in state space:

2. Policy improvement:

For all s in state space:

Value iteration

But:

 When we represent the
policy in a smart way

-

we can write these two
equations in one line!

Explicit policy representation:

Table with mapping: s → p(A)

Implicit policies

Implicit policy representation:

Derive policy from value table (only store value table as solution)

Example:

Implicit policies

Implicit policy representation:

Derive policy from value table (only store value table as solution)

Example:

Implicit policies

s V(s)

1 2

2 4

3 3

Value table

Implicit policy representation:

Derive policy from value table (only store value table as solution)

Example:

Implicit policies

s V(s)

1 2

2 4

3 3

Value table Policy (function of value table)

Example for greedy policy

Implicit policy representation:

Derive policy from value table (only store value table as solution)

Example:

Implicit policies

State-action value table Policy (function of value table)

a=up a=down ..

s=1 Q(s,a)=5 3

s=2 9 4

s=3 4 2

Implicit policy representation:

Derive policy from value table (only store value table as solution)

Example:

Implicit policies

Policy (function of value table)

Example for greedy policy

a=up a=down ..

s=1 Q(s,a)=5 3

s=2 9 4

s=3 4 2

State-action value table

Two ingredients:

- Alternate policy evaluation (1 sweep) and policy improvement (1 sweep)
- Implicitly represent the policy with a value table.

Effect: can write the update as a single equation!

Value iteration

Two ingredients:

- Alternate policy evaluation (1 sweep) and policy improvement (1 sweep)
- Implicitly represent the policy with a value table.

Effect: can write the update as a single equation!

Algorithm:

Loop until convergence:

For each s in state space:

Value iteration

Two ingredients:

- Alternate policy evaluation (1 sweep) and policy improvement (1 sweep)
- Implicitly represent the policy with a value table.

Effect: can write the update as a single equation!

Algorithm:

Loop until convergence:

For each s in state space:

Value iteration

Back-up diagram

max

Two ingredients:

- Alternate policy evaluation (1 sweep) and policy improvement (1 sweep)
- Implicitly represent the policy with a value table.

Effect: can write the update as a single equation!

Algorithm:

Loop until convergence:

For each s in state space:

Returns optimal value function V*(s)!

Value iteration

Back-up diagram

max

Two ingredients:

- Alternate policy evaluation (1 sweep) and policy improvement (1 sweep)
- Implicitly represent the policy with a value table.

Effect: can write the update as a single equation!

Algorithm:

Loop until convergence:

For each s in state space:

Returns optimal value function V*(s)!

Value iteration

Back-up diagram

max

Very straightforward algorithm!

Value iteration

Full pseudocode in lecture notes

= same algorithm but with state-action values!

Q-Value iteration

= same algorithm but with state-action values!

Algorithm

Loop until convergence:

For each s in state space:

For each a in action space:

Returns optimal state-action value function Q*(s,a)!

Q-Value iteration

= same algorithm but with state-action values!

Algorithm

Loop until convergence:

For each s in state space:

For each a in action space:

Returns optimal state-action value function Q*(s,a)!

Q-Value iteration

Back-up diagram

max

Q-Value iteration

Full pseudocode in lecture notes

Small problem: can reason what optimal value should be

Value iteration example

s V*(s)

1 ?

2 ?

3 ?

Value tableTask

Small problem: can reason what optimal value should be

Q: Compute V*(s=3).

Value iteration example

s V*(s)

1 ?

2 ?

3 ?

Value tableTask

Hints

Small problem: can reason what optimal value should be

Q: Compute V*(s=3).

A: Best action = left

Value iteration example

s V*(s)

1 ?

2 ?

3 ?

Value tableTask

Hints

Small problem: can reason what optimal value should be

Q: Compute V*(s=3).

A: Best action = left
This always reaches state 5

Value iteration example

s V*(s)

1 ?

2 ?

3 ?

Value tableTask

Hints

Small problem: can reason what optimal value should be

Q: Compute V*(s=3).

A: Best action = left
This always reaches state 5
Reward = 20 and terminates (so V(5)=0)

Value iteration example

s V*(s)

1 ?

2 ?

3 ?

Value tableTask

Hints

Small problem: can reason what optimal value should be

Q: Compute V*(s=3).

A: Best action = left
This always reaches state 5
Reward = 20 and terminates (so V(5)=0)

V*(3) = 20 + 1.0 * 0 = 20

Value iteration example

s V*(s)

1 ?

2 ?

3 ?

Value tableTask

Hints

Small problem: can reason what optimal value should be

Q: Compute V*(s=3).

A: Best action = left
This always reaches state 5
Reward = 20 and terminates (so V(5)=0)

V*(3) = 20 + 1.0 * 0 = 20

Value iteration example

s V*(s)

1 ?

2 ?

3 ?

Value tableTask

Hints

Small problem: can reason what optimal value should be

Q: Compute V*(s=3).

A: Best action = left
This always reaches state 5
Reward = 20 and terminates (so V(5)=0)

V*(3) = 20 + 1.0 * 0 = 20

Value iteration example

s V*(s)

1 ?

2 ?

3 ?

Value tableTask

Hints

Small problem: can reason what optimal value should be

Q: Compute V*(s=3).

A: Best action = left
This always reaches state 5
Reward = 20 and terminates (so V(5)=0)

V*(3) = 20 + 1.0 * 0 = 20

Value iteration example

s V*(s)

1 ?

2 ?

3 ?

Value tableTask

Hints

Small problem: can reason what optimal value should be

Q: Compute V*(s=2).

Value iteration example

s V*(s)

1 ?

2 ?

3 20.0

Value tableTask

Hints

Small problem: can reason what optimal value should be

Q: Compute V*(s=2).

A: Best action = up
80% reaches s=3 with r=-1
20% slips and reaches s=4 with r=-10

V*(2) = 0.8(-1 + 1.0*20) + 0.2(-10+1.0*0) = 13.2

Value iteration example

s V*(s)

1 ?

2 ?

3 20.0

Value tableTask

Hints

Small problem: can reason what optimal value should be

Q: Compute V*(s=1).

Value iteration example

s V*(s)

1 ?

2 13.2

3 20.0

Value tableTask

Hints

Small problem: can reason what optimal value should be

Q: Compute V*(s=1).

A: Best action = up
Always reaches s=2, with r=-1.

V*(1) = -1 + 1.0 * 13.2 = 12.2

Value iteration example

s V*(s)

1 ?

2 13.2

3 20.0

Value tableTask

Hints

Does value iteration give the same solution?

Value iteration example

s V*(s)

1 12.2

2 13.2

3 20.0

Value tableTask

Hints

Value iteration example

Value iteration example

Initialize value vector

Value iteration example

Manually wrote Bellman optimality equation

Only wrote the terms for which T(s’|s,a) is positive

Initialize value vector

Value iteration example

Yes!
Exactly finds the same optimal values

Value iteration example

Yes!
Exactly finds the same optimal values

Principle works - applicable to larger problems

Value iteration example

Sloppy example:

- No generic code (separation of algorithm and environment)
- No stopping criteria

Value iteration example

Sloppy example:

- No generic code (separation of algorithm and environment)
- No stopping criteria

We will do this the right
way in the assignment

Tree/Graph SearchDynamic Programming

Discussion: DP versus Search

Tree/Graph Search

- Local solution

Dynamic Programming

- Global solution

Discussion: DP versus Search

s V*(s)

1 12.2

2 13.2

Tree/Graph Search

- Local solution

- Memory requirement varies,
but usually lower than DP

Dynamic Programming

- Global solution

- High memory requirement:
O(|S|) or O(|S|x|A|)

Discussion: DP versus Search

s V*(s)

1 12.2

2 13.2

Tree/Graph Search

- Local solution

- Memory requirement varies,
but usually lower than DP

Dynamic Programming

- Global solution

- High memory requirement:
O(|S|) or O(|S|x|A|)

Discussion: DP versus Search

s V*(s)

1 12.2

2 13.2

Curse of dimensionality:
Number of unique states grows exponentially in problem size (number of variables that the state
describes)

Imagine our task is a bit more complex, like a game of Tic-tac-toe.

- A state represents a combination of 9 variables (each location on the board)
- Each variable can take three values (X, O or empty)

Curse of dimensionality

Imagine our task is a bit more complex, like a game of Tic-tac-toe.

- A state represents a combination of 9 variables (each location on the board)
- Each variable can take three values (X, O or empty)

Q: How many unique states are there?

A:

Curse of dimensionality

Imagine our task is a bit more complex, like a game of Tic-tac-toe.

- A state represents a combination of 9 variables (each location on the board)
- Each variable can take three values (X, O or empty)

Q: How many unique states are there?

A: 39 = 19.683

Curse of dimensionality

Imagine our task is a bit more complex, like a game of Tic-tac-toe.

- A state represents a combination of 9 variables (each location on the board)
- Each variable can take three values (X, O or empty)

Q: How many unique states are there?

A: 39 = 19.683

Now imagine we make the board slightly bigger, to 4x4

Q: How many unique states are there now?

A:

Curse of dimensionality

Imagine our task is a bit more complex, like a game of Tic-tac-toe.

- A state represents a combination of 9 variables (each location on the board)
- Each variable can take three values (X, O or empty)

Q: How many unique states are there?

A: 39 = 19.683

Now imagine we make the board slightly bigger, to 4x4

Q: How many unique states are there now?

A: 316 = 43.046.721

The size of the state space grows exponentially in the number of underlying variables.

Curse of dimensionality

- Markov Decision Process

- Bellman equation

- Dynamic Programming

Summary

- Markov Decision Process
- Powerful (generic) paradigm to define sequential tasks.
- Can deal with multiple goals (and trading-off between them through

utility/value).
- Can deal with stochastic dynamics.

- Bellman equation

- Dynamic Programming

Summary

- Markov Decision Process
- Powerful (generic) paradigm to define sequential tasks.
- Can deal with multiple goals (and trading-off between them through

utility/value).
- Can deal with stochastic dynamics.

- Bellman equation
- Recursive relation between state/state-action values.
- Fundamental principle below many MDP algorithms.

- Dynamic Programming

Summary

- Markov Decision Process
- Powerful (generic) paradigm to define sequential tasks.
- Can deal with multiple goals (and trading-off between them through

utility/value).
- Can deal with stochastic dynamics.

- Bellman equation
- Recursive relation between state/state-action values.
- Fundamental principle below many MDP algorithms.

- Dynamic Programming
- Group of algorithms to solve for the optimal value/policy in a MDP.
- Fundamental ideas for most other MDP algorithms.

Summary

- MDP formulation
- Cumulative reward & value
- Bellman equation
- Dynamic programming

Summary

Key principle below:

- Search & planning
- Reinforcement learning (not in this course)

- MDP formulation
- Cumulative reward & value
- Bellman equation
- Dynamic programming

A lot of current AI research is into MDP problem formulations

Summary

Key principle below:

- Search & planning
- Reinforcement learning (not in this course)

- MDP formulation
- Cumulative reward & value
- Bellman equation
- Dynamic programming

A lot of current AI research is into MDP problem formulations

Summary

Key principle below:

- Search & planning
- Reinforcement learning (not in this course)

 e.g., AlphaGo Zero:

Solution = search (MCTS) + learning

Line between symbolic and subsymbolic
AI can be thin!

1. Study the lecture notes
a. Summarizes the material of this lecture
b. Gives extra explanation and examples

Assignment

1. Study the lecture notes
a. Summarizes the material of this lecture
b. Gives extra explanation and examples

2. Make MDP assignment
a. Coding exercises: implement value iteration and Q-value iteration
b. Reflection exercises: answer in pdf.

Good luck!

Assignment

