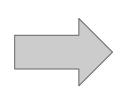
Continuous Reinforcement Learning & Policy Search

Course: Reinforcement Learning, Leiden University

Lecturer: Thomas Moerland



Topic of today!

Content

- A. <u>Continuous reinforcement learning</u>
 - 1. Recap: sets, functions, probability
 - 2. Continuous Markov Decision Process
 - 3. Representing the solution

Break

Content

- A. <u>Continuous reinforcement learning</u>
 - 1. Recap: sets, functions, probability
 - 2. Continuous Markov Decision Process
 - 3. Representing the solution

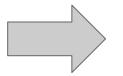
Break

- B. Policy search
 - 4. Policy gradients
 - 5. Actor-critic
 - 6. Gradient-free policy search

1. Recap: sets, functions, probability

Discrete versus continuous spaces

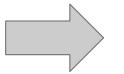
Discrete set/space



Continuous set/space

Discrete versus continuous spaces

Discrete set/space



Continuous set/space

Countable elements

Interval

Discrete versus continuous spaces

Discrete set/space

Countable elements



Continuous set/space

Interval

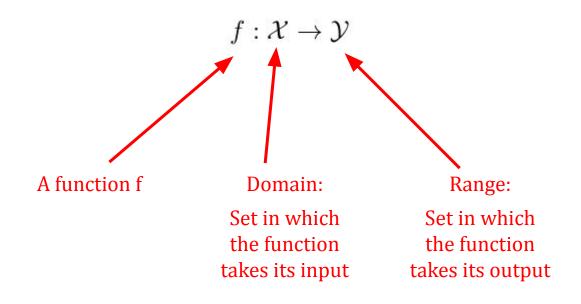
 $\begin{aligned} &- \mathcal{X} = \{1, 2, .., n\} \\ &- \mathcal{X} = \{\text{up,down,left,right}\} \\ &- \mathcal{X} = \{0, 1\}^d \end{aligned}$

 $- \mathcal{X} = [2, 11]$ $- \mathcal{X} = \mathbb{R}$ $- \mathcal{X} = [0, 1]^d$

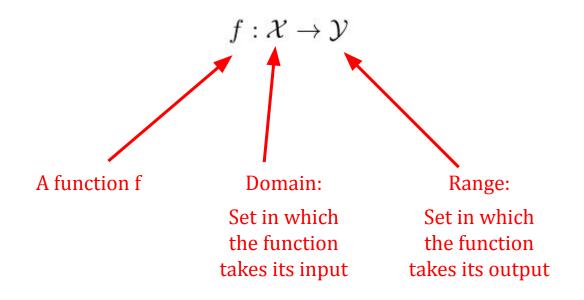
Discrete versus continuous functions

$$f: \mathcal{X} \to \mathcal{Y}$$

Discrete versus continuous functions



Discrete versus continuous functions



Can both be either discrete or continuous!

Discrete probability distribution

Discrete probability distribution

- Parameters: p₁, p₂,.., p_{n-1}

Continuous probability distribution

Parameters: depends on distribution,
 e.g. normal distribution μ,σ

Discrete probability distribution

Parameters: p₁, p₂,..., p_{n-1}

- Probability mass:

$$\begin{array}{ccc} p(X=1) & p(X=2) & p(X=3) \\ \hline 0.2 & 0.4 & 0.4 \end{array}$$

- Parameters: depends on distribution,
 e.g. normal distribution μ,σ
- Probability density:

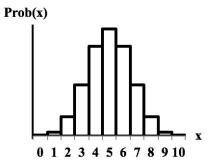
e.g.
$$p(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Discrete probability distribution

- Parameters: p₁, p₂,.., p_{n-1}

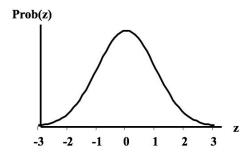
- Probability mass:

$$\begin{array}{ccc} p(X=1) & p(X=2) & p(X=3) \\ \hline 0.2 & 0.4 & 0.4 \end{array}$$



- Parameters: depends on distribution,
 e.g. normal distribution μ,σ
- Probability density:

e.g.
$$p(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

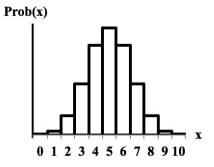


Discrete probability distribution

Parameters: p₁, p₂,..., p_{n-1}

- Probability mass:

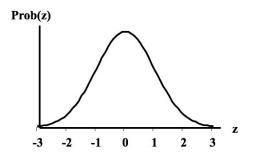
$$\begin{array}{ccc} p(X=1) & p(X=2) & p(X=3) \\ \hline 0.2 & 0.4 & 0.4 \end{array}$$

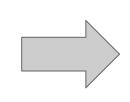


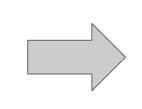
Parameters define the entire distribution

- Parameters: depends on distribution,
 e.g. normal distribution μ,σ
- Probability density:

e.g.
$$p(x|\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

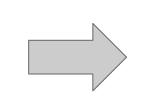






Discrete states (board states)

Continuous states (joint angles)



Discrete states

Continuous states

Discrete actions

(moves)

Continuous actions

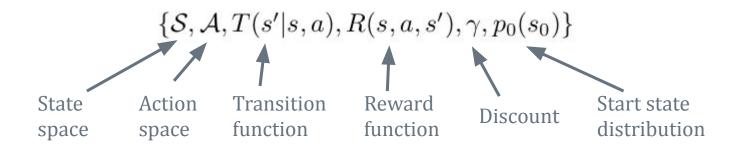
(torques/voltages on motors)

Principles stay largely the same

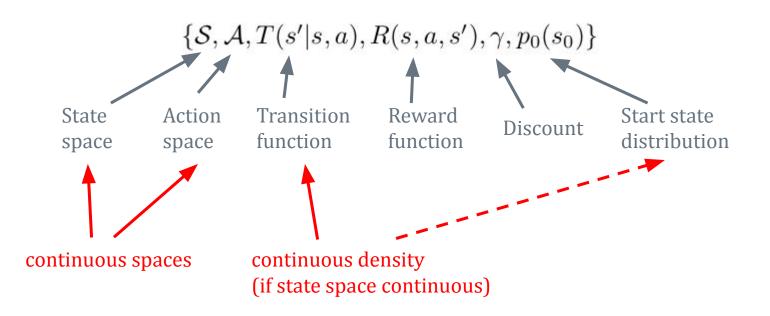
Definition of MPD:

 $\{\mathcal{S}, \mathcal{A}, T(s'|s, a), R(s, a, s'), \gamma, p_0(s_0)\}$

Definition of MPD:



Definition of MPD:



We define a policy:

We define a policy:

- Stochastic policy
$$\pi(a|s)$$
 $\pi:\mathcal{S} o p(\mathcal{A})$

We define a policy:

- Stochastic policy $\pi(a|s)$ $\pi: \mathcal{S} o p(\mathcal{A})$
- Deterministic policy $\pi(s)$ $\pi:\mathcal{S} o\mathcal{A}$

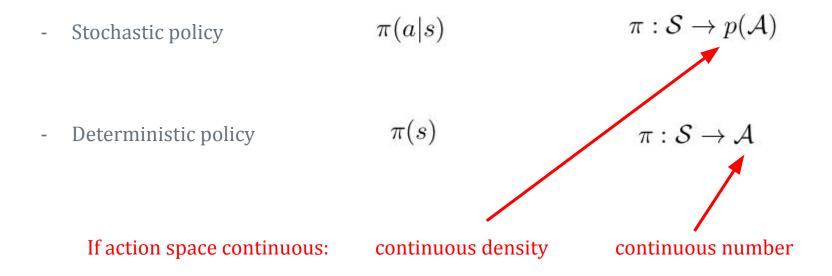
We define a policy:

 - Stochastic policy
 $\pi(a|s)$ $\pi: S \to p(\mathcal{A})$

 - Deterministic policy
 $\pi(s)$ $\pi: S \to \mathcal{A}$

 If action space continuous:
 continuous density
 continuous number

We define a policy:



Extensively discuss policy representation in next section

We sample traces

$$h_t^n = \{s_t, a_t, r_t, s_{t+1}, \dots, a_{t+n}, r_{t+n}, s_{t+n+1}\}$$

We sample traces

$$h_t^n = \{s_t, a_t, r_t, s_{t+1}, \dots, a_{t+n}, r_{t+n}, s_{t+n+1}\}$$

The cumulative return of the trace is

$$R(h_t) = r_t + \gamma \cdot r_{t+1} + \gamma^2 \cdot r_{t+2} + \dots$$

The average cumulative return are the **value** V(s) and **state-action value** Q(s,a)

The average cumulative return are the value V(s) and state-action value Q(s,a)

$$V^{\pi}(s) = \mathbb{E}_{h_t \sim p(h_t)} \Big[\sum_{i=0}^{\infty} \gamma^i \cdot r_{t+i} | s_t = s \Big]$$

The average cumulative return are the value V(s) and state-action value Q(s,a)

$$V^{\pi}(s) = \mathbb{E}_{h_t \sim p(h_t)} \Big[\sum_{i=0}^{\infty} \gamma^i \cdot r_{t+i} | s_t = s \Big]$$

$$Q^{\pi}(s,a) = \mathbb{E}_{h_t \sim p(h_t)} \Big[\sum_{i=0}^{\infty} \gamma^i \cdot r_{t+i} | s_t = s, a_t = a \Big]$$

Continuous Markov Decision Process

The average cumulative return are the **value** V(s) and **state-action value** Q(s,a)

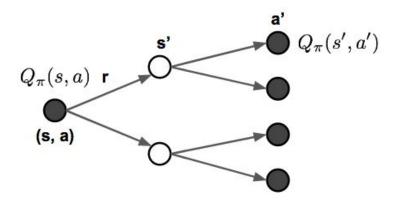
$$V^{\pi}(s) = \mathbb{E}_{h_t \sim p(h_t)} \Big[\sum_{i=0}^{\infty} \gamma^i \cdot r_{t+i} | s_t = s \Big]$$

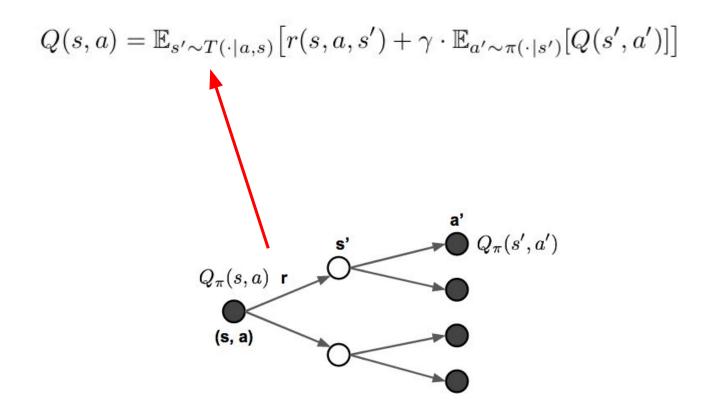
$$Q^{\pi}(s,a) = \mathbb{E}_{h_t \sim p(h_t)} \left[\sum_{i=0}^{\infty} \gamma^i \cdot r_{t+i} | s_t = s, a_t = a \right]$$

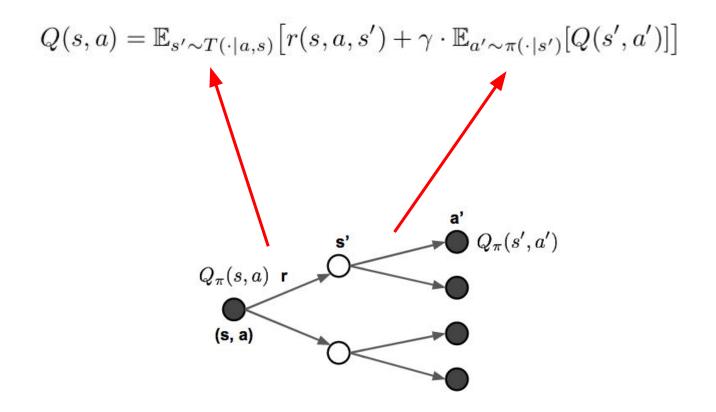
These value functions have recursive relations = Bellman equation

$$Q(s,a) = \mathbb{E}_{s' \sim T(\cdot|a,s)} \left[r(s,a,s') + \gamma \cdot \mathbb{E}_{a' \sim \pi(\cdot|s')} [Q(s',a')] \right]$$

$$Q(s,a) = \mathbb{E}_{s' \sim T(\cdot|a,s)} \left[r(s,a,s') + \gamma \cdot \mathbb{E}_{a' \sim \pi(\cdot|s')} [Q(s',a')] \right]$$







Bellman equation:

$$Q(s,a) = \mathbb{E}_{s' \sim T(\cdot|a,s)} \left[r(s,a,s') + \gamma \cdot \mathbb{E}_{a' \sim \pi(\cdot|s')} [Q(s',a')] \right]$$

Discrete state & action space

$$Q(s,a) = \sum_{s' \in \mathcal{S}} T(s'|s,a) \left[r(s,a,s') + \gamma \cdot \sum_{a \in \mathcal{A}} \pi(a|s) [Q(s',a')] \right]$$

$$Q(s, a) = \mathbb{E}_{s' \sim T(\cdot|a, s)} [r(s, a, s') + \gamma \cdot \mathbb{E}_{a' \sim \pi(\cdot|s')} Q(s', a')]]$$

Discrete state & action space
$$Q(s, a) = \sum_{s' \in S} T(s'|s, a) [r(s, a, s') + \gamma \sum_{a \in \mathcal{A}} \pi(a|s) Q(s', a')]]$$

Bellman equation:

$$Q(s,a) = \mathbb{E}_{s' \sim T(\cdot|a,s)} \left[r(s,a,s') + \gamma \cdot \mathbb{E}_{a' \sim \pi(\cdot|s')} [Q(s',a')] \right]$$

Continuous state & action space

Bellman equation:

$$Q(s,a) = \mathbb{E}_{s' \sim T(\cdot|a,s)} \left[r(s,a,s') + \gamma \cdot \mathbb{E}_{a' \sim \pi(\cdot|s')} [Q(s',a')] \right]$$

Continuous state & action space

$$Q(s,a) = \int_{s'} T(s'|s,a) \left[r(s,a,s') + \gamma \cdot \int_{a'} \left[\pi(a'|s') \cdot Q(s',a') \right] \mathrm{d}a' \right] \mathrm{d}s'$$

$$Q(s,a) = \mathbb{E}_{s' \sim T(\cdot|a,s)} [r(s,a,s') + \gamma \cdot \mathbb{E}_{a' \sim \pi(\cdot|s')} Q(s',a')]]$$

Continuous state & action space
$$Q(s,a) = \int_{s'} T(s'|s,a) [r(s,a,s') + \gamma \cdot \int_{a'} [\pi(a'|s') \cdot Q(s',a')] da'] ds'$$

Bellman equation:

$$Q(s,a) = \mathbb{E}_{s' \sim T(\cdot|a,s)} [r(s,a,s') + \gamma \cdot \mathbb{E}_{a' \sim \pi(\cdot|s')} Q(s',a')]]$$

Continuous state & action space
$$Q(s,a) = \int_{s'} T(s'|s,a) [r(s,a,s') + \gamma \cdot \int_{a'} [\pi(a'|s') \cdot Q(s',a')] da'] ds'$$

In expectations: summation becomes integration

Objective: Value of the start state (= expected cumulative reward)

Objective: Value of the start state (= expected cumulative reward)

$$J(\pi) = V^{\pi}(s_0) = \mathbb{E}_{h_0 \sim p(h_0|\pi)} \Big[R(h_0) \Big]$$

Objective: Value of the start state (= expected cumulative reward)

$$J(\pi) = V^{\pi}(s_0) = \mathbb{E}_{h_0 \sim p(h_0|\pi)} \Big[R(h_0) \Big]$$

function of policy (parameters)

Objective: Value of the start state (= expected cumulative reward)

$$J(\pi) = V^{\pi}(s_0) = \mathbb{E}_{h_0 \sim p(h_0|\pi)} \Big[R(h_0) \Big]$$

function of policy (parameters)

Goal: Find the optimal policy

Objective: Value of the start state (= expected cumulative reward)

$$J(\pi) = V^{\pi}(s_0) = \mathbb{E}_{h_0 \sim p(h_0|\pi)} \Big[R(h_0) \Big]$$

function of policy (parameters)

Goal: Find the optimal policy

$$\pi^{\star}(a|s) = \arg\max_{\pi} V^{\pi}(s_0)$$

Objective: Value of the start state (= expected cumulative reward)

$$J(\pi) = V^{\pi}(s_0) = \mathbb{E}_{h_0 \sim p(h_0|\pi)} \Big[R(h_0) \Big]$$

function of policy (parameters)

Goal: Find the optimal policy

$$\pi^{\star}(a|s) = \operatorname*{arg\,max}_{\pi} V^{\pi}(s_0)$$

policy that achieves the highest average cumulative reward

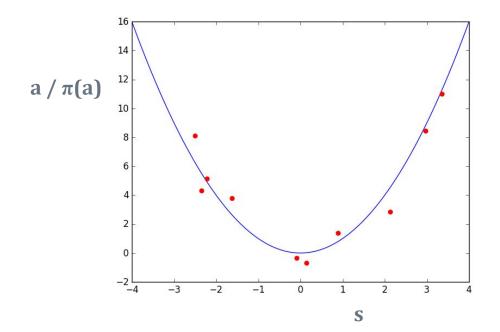
Policy = mapping from state to (probability distribution over) actions

Policy = mapping from state to (probability distribution over) actions

= supervised learning problem

Policy = mapping from state to (probability distribution over) actions

= supervised learning problem



Supervised learning

Parametric (e.g. table, neural network)

Non-parametric (e.g. Gaussian Process, k-NN)

Supervised learning

Parametric

Non-parametric

 $\pi_{\theta}(a|s)$

 $\pi_{\theta}: \mathcal{S} \times \Theta \to p(\mathcal{A}).$

Parametric model type **Tabular**

Function approximation

Parametric model type **Tabular** e.g., table, parameters are entries

(planning & RL)

Function approximation e.g. neural network

(*RL*)

Parametric model type **Tabular** e.g., table, parameters are entries

(planning & RL)

Function approximation e.g. neural network

(*RL*)

Validity

Global

Local

Parametric model type **Tabular** e.g., table, parameters are entries

(planning & RL)

Function approximation e.g. neural network

(*RL*)

Validity

Global

solution for entire input space

(*RL*)

Local

solution for local region of input space

(planning)

Parametric model type **Tabular** e.g., table, parameters are entries

(planning & RL)

Function approximation e.g. neural network

(*RL*)

Validity

Global

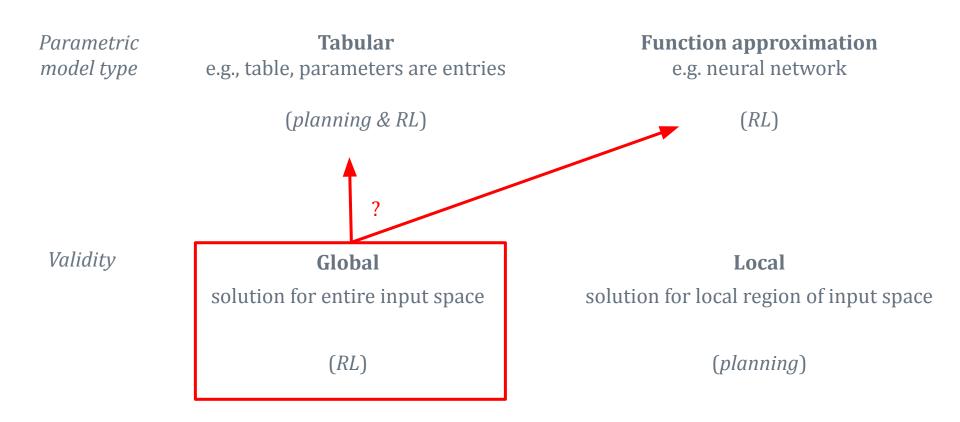
solution for entire input space

(RL)

Local

solution for local region of input space

(planning)

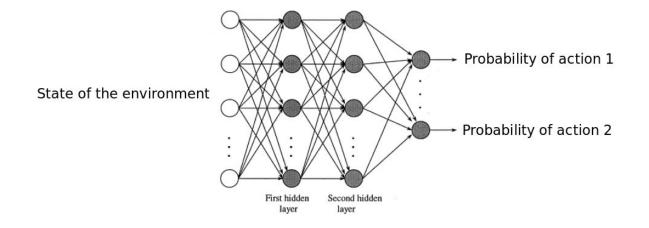


How should we represent this function?

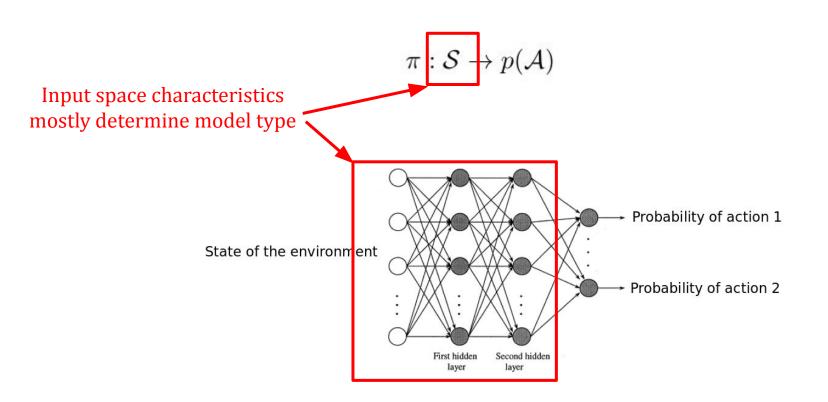
$$\pi: \mathcal{S} \to p(\mathcal{A})$$

How should we represent this function?

 $\pi: \mathcal{S} \to p(\mathcal{A})$



How should we represent this function?



Tabular or function approximation

Two main aspects of S:

- 1. Type of space
- 2. Dimensionality

Tabular or function approximation

Two main aspects of S:

- 1. Type of space
- 2. Dimensionality

1. <u>Type of input space</u>

		Discrete	Continuous	_
2. <u>Dim of</u>	Low dimensional			
<u>input</u> space	High dimensional			

Tabular or function approximation

Two main aspects of S:

- 1. Type of space
- 2. Dimensionality

1. <u>Type of input space</u>

		Discrete	Continuous
2. <u>Dim of</u> <u>input</u>	Low dimensional		
space	High dimensional		

Policy table

s	$\pi(a=up s)$	$\pi(a{=}\mathrm{down} s)$	$\pi(a = \operatorname{left} s)$	$\pi(a = \text{right} s)$
1	0.2	0.8	0.0	0.0
2	0.0	0.0	0.0	1.0
3	0.7	0.0	0.3	0.0
etc.				

Policy table

s	$\pi(a=up s)$	$\pi(a{=}\mathrm{down} s)$	$\pi(a = \operatorname{left} s)$	$\pi(a{=}\mathrm{right} s)$
1	0.2	0.8	0.0	0.0
2	0.0	0.0	0.0	1.0
3	0.7	0.0	0.3	0.0
etc.		Sec.		

State-action value table

	a=up	a=down	a = left	a = right
s=1	4.0	3.0	7.0	1.0
s=2	2.0	-4.0	0.3	1.0
s=3	3.5	0.8	3.6	6.2
etc.				

Policy table

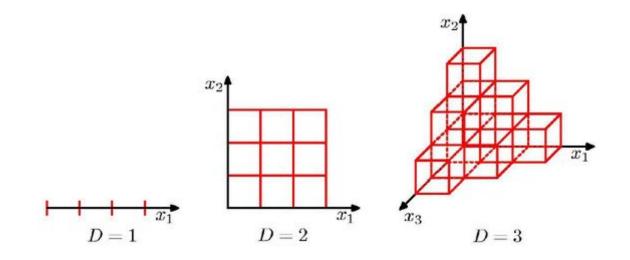
s	$\pi(a=up s)$	$\pi(a{=}\mathrm{down} s)$	$\pi(a = \operatorname{left} s)$	$\pi(a = \text{right} s)$
1	0.2	0.8	0.0	0.0
2	0.0	0.0	0.0	1.0
3	0.7	0.0	0.3	0.0
etc.				

State-action value table

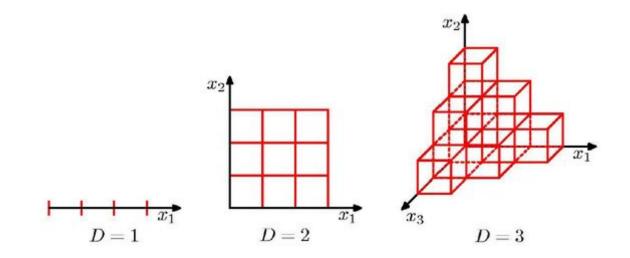
	a=up	a = down	a = left	$a{=}\mathrm{right}$	
s=1	4.0	3.0	7.0	1.0	Table entries are
s=2	2.0	-4.0	0.3	1.0	the parameters!
s=3	3.5	0.8	3.6	6.2	1
etc.		••			

The size/cardinality of a space scales exponentially in it dimensionality

The size/cardinality of a space scales exponentially in it dimensionality

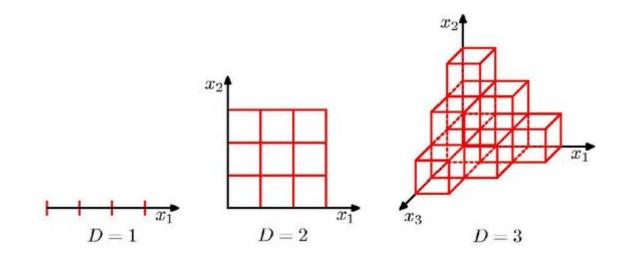


The size/cardinality of a space scales exponentially in it dimensionality



 $|\mathcal{X}| = O(\exp(\operatorname{Dim}(\mathcal{X})))$

The size/cardinality of a space scales exponentially in it dimensionality



 $|\mathcal{X}| = O(\exp(\operatorname{Dim}(\mathcal{X})))$

Problem for tables!

Two main aspects of S:

- 1. Type of space
- 2. Dimensionality

1. <u>Type of input space</u>

		Discrete	Continuous
2. <u>Dim of</u> <u>input</u>	Low dimensional	Table(/FA)	
space	High dimensional		

Two main aspects of S:

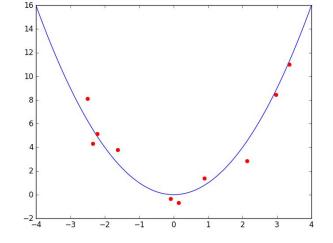
- 1. Type of space
- 2. Dimensionality

1. <u>Type of input space</u>

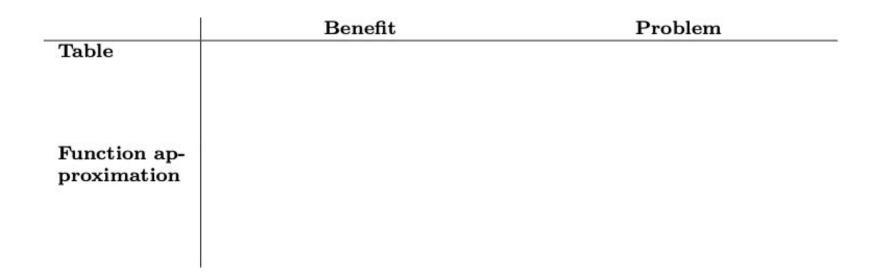
		Discrete	Continuous
	Low dimensional	Table(/FA)	
<u>input</u> <u>space</u>	High dimensional		

Function approximation

- 1. Specify parametrized function from input to output
- 2. Specify objective/loss
- 3. Optimize parameters to minimize loss



Examples: linear regression, neural networks



	Benefit	Problem
Table		
	• Exact	
	• (Easy to design)	
Function ap- proximation		

	Benefit	Problem
Table		
	• Exact	• Curse of dimensionality
	• (Easy to design)	• No generalization
Function ap- proximation		

	Benefit	Problem
Table		
	• Exact	• Curse of dimensionality
	• (Easy to design)	• No generalization
Function ap- proximation	• Generalization	
	• Lower memory require- ment (scales to high-dim)	

	Benefit	Problem
Table		
	• Exact	• Curse of dimensionality
	• (Easy to design)	• No generalization
Function ap- proximation	• Generalization	• Approximation errors
	• Lower memory require- ment (scales to high-dim)	

Two main aspects of S:

- 1. Type of space
- 2. Dimensionality

1. <u>Type of input space</u>

		Discrete	Continuous
2. <u>Dim of</u>	Low dimensional	Table(/FA)	
<u>input</u> space	High dimensional	FA	

Two main aspects of S:

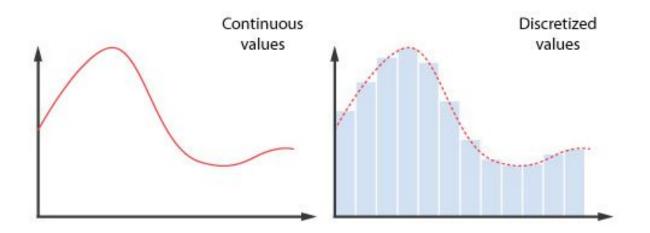
- 1. Type of space
- 2. Dimensionality

1. <u>Type of input space</u>

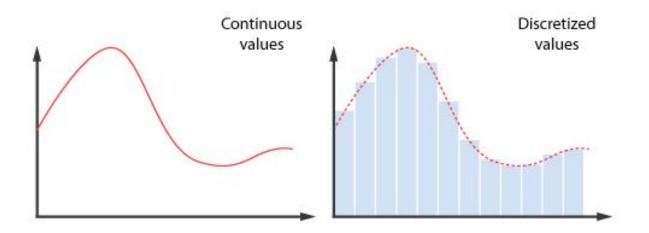
		Discrete	Continuous
2. <u>Dim of</u> <u>input</u>	Low dimensional	Table(/FA)	
space	High dimensional	FA	

A first approach to store the solution for continuous input spaces is discretization

A first approach to store the solution for continuous input spaces is discretization

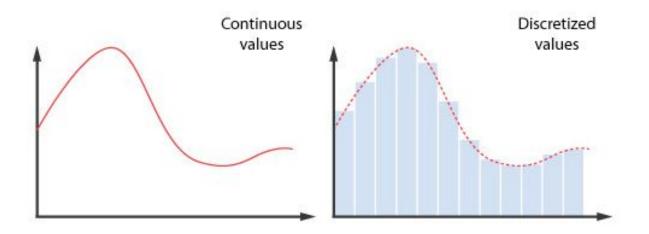


A first approach to store the solution for continuous input spaces is discretization



Works for low-dimensional input (state) spaces, but also suffers from the curse of dimensionality

A first approach to store the solution for continuous input spaces is discretization



As a second solution, function approximation always works for continuous input & scales to high dimensions

Two main aspects of S:

- 1. Type of space
- 2. Dimensionality

1. <u>Type of input space</u>

		Discrete	Continuous
2. <u>Dim of</u> <u>input</u>	Low dimensional	Table(/FA)	Discretization/FA
<u>space</u>	High dimensional	FA	FA

Two main aspects of S:

- 1. Type of space
- 2. Dimensionality

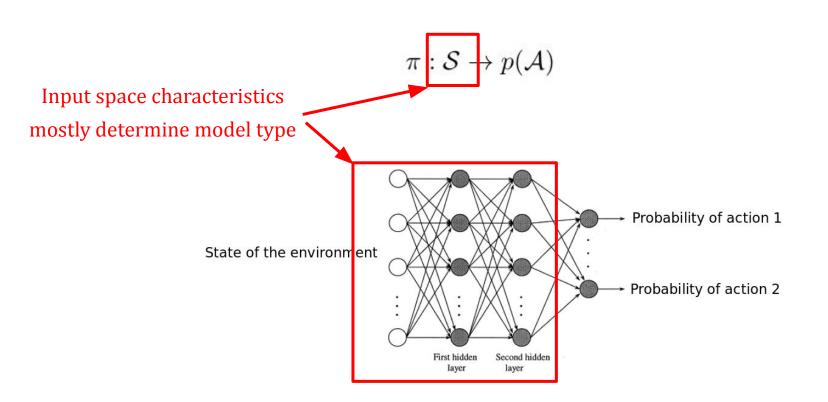
1. Type of input space

		Discrete	Continuous
2. <u>Dim of</u> <u>input</u>	Low dimensional	Table(/FA)	Discretization/FA
space	High dimensional	FA	\mathbf{FA}

In short: small problems discretization, larger problems function approximation

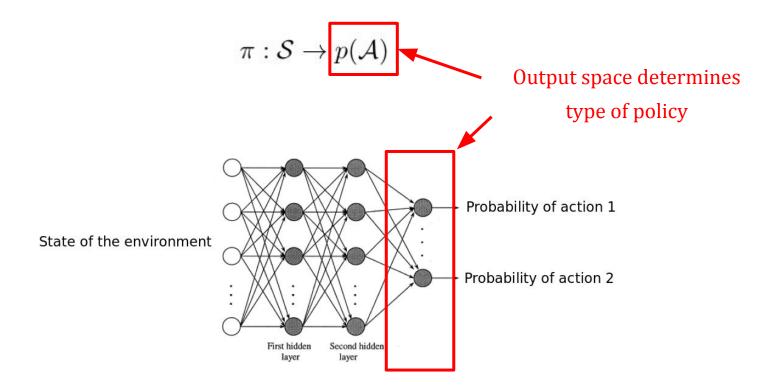
Representing the solution

How should we represent this function?



Representing the solution

How should we represent this function?



Three main considerations for A:

Three main considerations for A:

1. Type of action space: discrete - continuous

Three main considerations for A:

- 1. Type of action space: discrete continuous
- 2. Choice of representation: implicit (value-based) explicit (policy-based) both (actor-critic)

Three main considerations for A:

- 1. Type of action space: discrete continuous
- 2. Choice of representation: implicit (value-based) explicit (policy-based) both (actor-critic)
- 3. Choice of probabilistic: stochastic deterministic

Three main considerations for A:

- 1. Type of action space: discrete continuous
- 2. Choice of representation: implicit (value-based) explicit (policy-based) both (actor-critic)
- 3. Choice of probabilistic: stochastic deterministic

Dimensionality of A is usually low & not an important factor

Three main considerations for A:

- 1. Type of action space: discrete continuous
- 2. Choice of representation: implicit (value-based) explicit (policy-based) both (actor-critic)
- 3. Choice of probabilistic: stochastic deterministic

	Implicit policy $\pi = f(Q_{\theta}(s, a))$	Explicit policy $\pi_{\theta}(a s)$
Discrete action space		
Continuous action space		

Three main considerations for A:

- 1. Type of action space: discrete continuous
- 2. Choice of representation: implicit (value-based) explicit (policy-based) both (actor-critic)
- 3. Choice of probabilistic: stochastic deterministic

	Implicit policy $\pi = f(Q_{\theta}(s, a))$	Explicit policy $\pi_{\theta}(a s)$
Discrete action space		
Continuous action space		

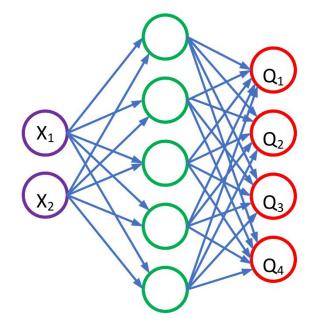
Implicit policies (= value-based RL)

 $\pi_{\theta}(a|s) = f(Q_{\theta}(s,a))$

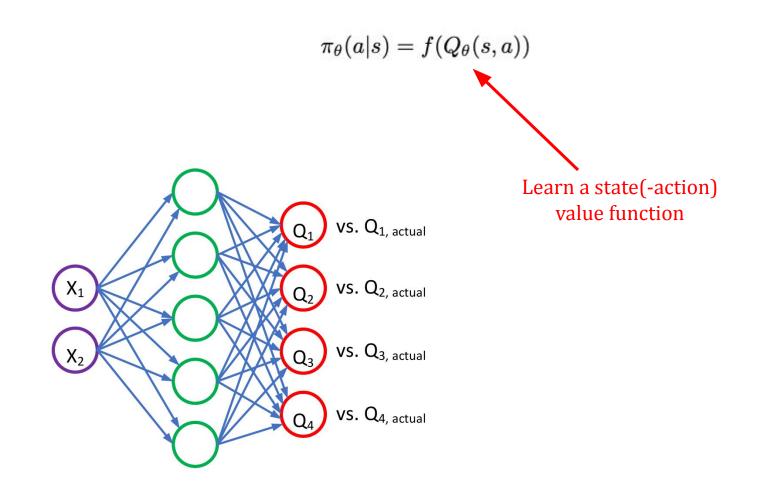
Implicit policies (= value-based RL)

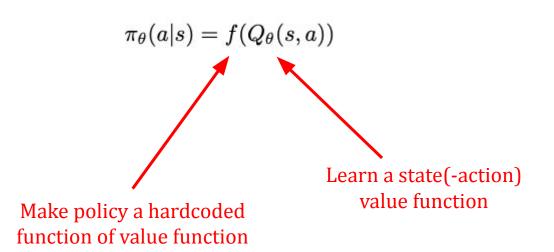
 $\pi_{\theta}(a|s) = f(Q_{\theta}(s,a))$

Learn a state(-action) value function



Implicit policies (= value-based RL)





 $\pi_{\theta}(a|s) = f(Q_{\theta}(s,a))$

Deterministic examples

 $\pi_{\theta}(a|s) = f(Q_{\theta}(s,a))$

Deterministic examples

 $\pi_{\theta}(s) = rg\max_{a \in \mathcal{A}} Q_{\theta}(s, a)$

 $\pi_{\theta}(a|s) = f(Q_{\theta}(s,a))$

Deterministic examples

"greedy policy"

 $\pi_{ heta}(s) = rg\max_{a \in \mathcal{A}} Q_{ heta}(s, a)$

 $\pi_{\theta}(a|s) = f(Q_{\theta}(s,a))$

Deterministic examples

"greedy policy"

$$\pi_{ heta}(s) = rgmax_{a \in \mathcal{A}} Q_{ heta}(s, a)$$

$$\pi_{ heta}(s) = rg\max_{a} \left[ar{Q}_{ heta}(s,a) + c \cdot \sqrt{rac{\ln n(s)}{n(s,a)}}
ight]$$

 $\pi_{\theta}(a|s) = f(Q_{\theta}(s,a))$

Deterministic examples

"greedy policy"

$$\pi_{\theta}(s) = \operatorname*{arg\,max}_{a \in \mathcal{A}} Q_{\theta}(s, a)$$

$$\pi_{\theta}(s) = \arg\max_{a} \begin{bmatrix} \bar{Q}_{\theta}(s, a) + c \cdot \sqrt{\frac{\ln n(s)}{n(s, a)}} \end{bmatrix}$$
 "UCT policy" (MCTS)

 $\pi_{\theta}(a|s) = f(Q_{\theta}(s,a))$

Deterministic examples

"greedy policy"

$$\pi_{\theta}(s) = \operatorname*{arg\,max}_{a \in \mathcal{A}} Q_{\theta}(s, a)$$

$$\pi_{\theta}(s) = \arg\max_{a} \begin{bmatrix} \bar{Q}_{\theta}(s, a) + c \cdot \sqrt{\frac{\ln n(s)}{n(s, a)}} \end{bmatrix}$$
 "UCT policy" (MCTS)

Note that the UCT policy is stochastic over multiple samples, since n(s,a) will change over multiple steps!

 $\pi_{\theta}(a|s) = f(Q_{\theta}(s,a))$

Stochastic example

 $\pi_{\theta}(a|s) = f(Q_{\theta}(s,a))$

Stochastic example

$$\pi_{ heta}(a|s) = rac{\exp Q_{ heta}(s,a)/ au}{\sum_{b \in \mathcal{A}} \exp Q_{ heta}(s,b)/ au}$$

 $\pi_{\theta}(a|s) = f(Q_{\theta}(s,a))$

Stochastic example

$$\pi_{\theta}(a|s) = \frac{\exp Q_{\theta}(s,a)/\tau}{\sum_{b \in \mathcal{A}} \exp Q_{\theta}(s,b)/\tau}$$

"Boltzmann policy"

 $\pi_{\theta}(a|s) = f(Q_{\theta}(s,a))$

Stochastic example

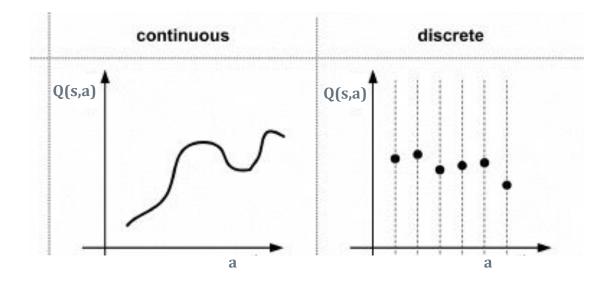
$$\pi_{\theta}(a|s) = \frac{\exp Q_{\theta}(s,a)/\tau}{\sum_{b \in \mathcal{A}} \exp Q_{\theta}(s,b)/\tau}$$

"Boltzmann policy"

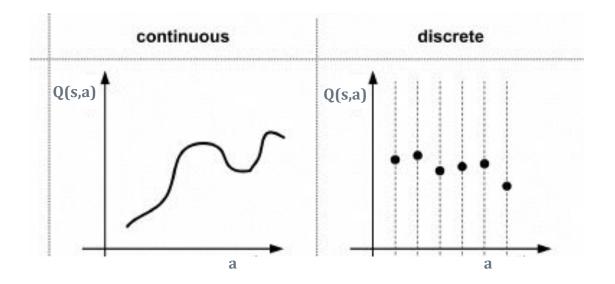
All examples for discrete action space! Does it also work for continuous action spaces?

All implicit policies require a form of maximization (to give better actions higher chance of selection)

All implicit policies require a form of maximization (to give better actions higher chance of selection)

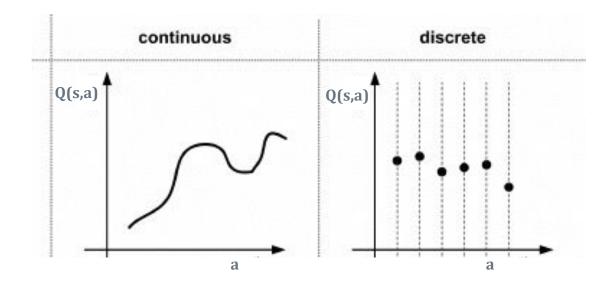


All implicit policies require a form of maximization (to give better actions higher chance of selection)



Discrete action space: easy maximization

All implicit policies require a form of maximization (to give better actions higher chance of selection)



Continuous action space: tough! (entire new maximization) Discrete action space: easy maximization

Explicit versus implicit policy

Two main aspects of A:

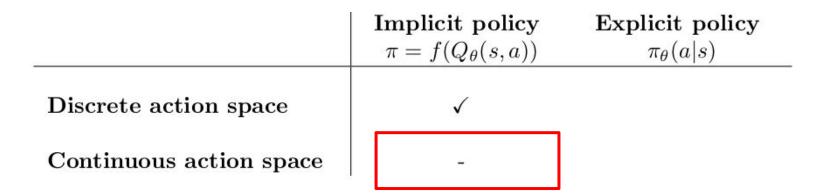
- 1. Type of policy (implicit or explicit)
- 2. Type of space (discrete versus continuous)

	Implicit policy $\pi = f(Q_{\theta}(s, a))$	Explicit policy $\pi_{\theta}(a s)$
Discrete action space	✓	
Continuous action space	-	

Explicit versus implicit policy

Two main aspects of A:

- 1. Type of policy (implicit or explicit)
- 2. Type of space (discrete versus continuous)



Implicit policies (as widely used in search and value-based RL) not really useful in continuous action space!

Explicit versus implicit policy

Two main aspects of A:

- 1. Type of policy (implicit or explicit)
- 2. Type of space (discrete versus continuous)

	Implicit policy $\pi = f(Q_{\theta}(s, a))$	Explicit policy $\pi_{\theta}(a s)$
Discrete action space	\checkmark	
Continuous action space	-17	

Direct map S to p(A) or A

Direct map S to p(A) or A

Discrete action space:

- Deterministic discrete policy
 - *= uncommon, since argmax is not differentiable*

Direct map S to p(A) or A

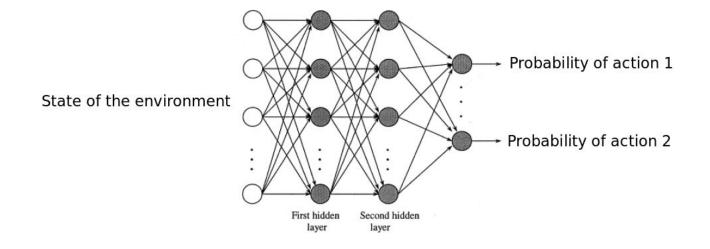
Discrete action space:

- Stochastic, e.g. $\pi_{\theta}(a|s) = \operatorname{softmax}(f_{\theta}(s))$

Direct map S to p(A) or A

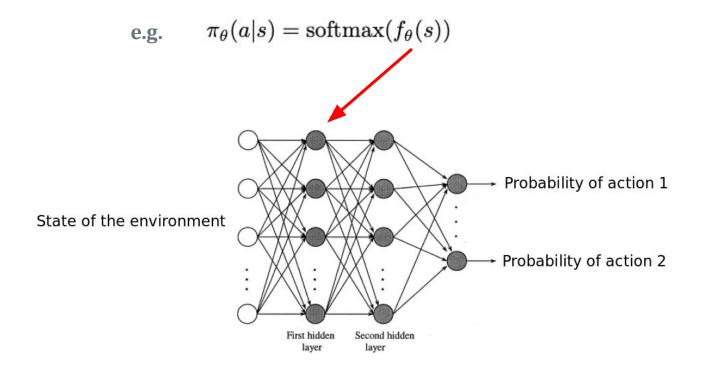
Discrete action space:

e.g. $\pi_{\theta}(a|s) = \operatorname{softmax}(f_{\theta}(s))$



Direct map S to p(A) or A

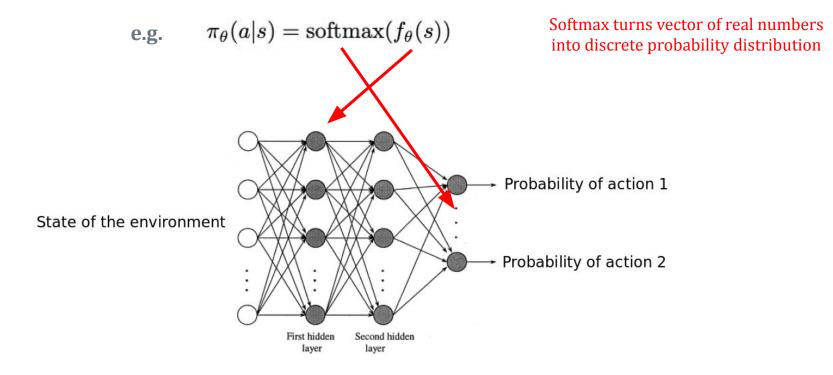
Discrete action space:



Direct map S to p(A) or A

Discrete action space:

 $\operatorname{softmax}(y) = \frac{e^{y_i}}{\sum_k e^{y_k}}.$



Direct map S to p(A) or A

Continuous action space

Direct map S to p(A) or A

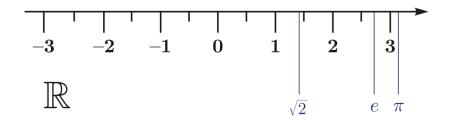
Continuous action space

- Deterministic policy: simply predict a real number

Direct map S to p(A) or A

Continuous action space

- Deterministic policy: simply predict a real number

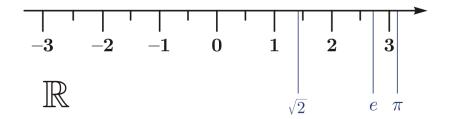


Direct map S to p(A) or A

Continuous action space

- Deterministic policy: simply predict a real number

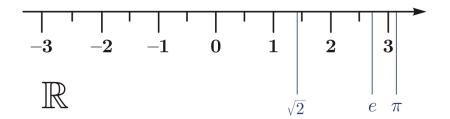
To make it a probability: can think of it as the mean of a Gaussian with fixed variance



Direct map S to p(A) or A

Continuous action space

- Deterministic policy: simply predict a real number

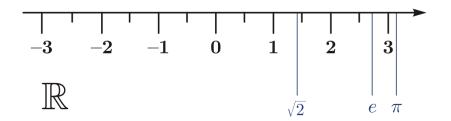


Important: continuous action spaces are usually bounded.

Direct map S to p(A) or A

Continuous action space

- Deterministic policy: simply predict a real number



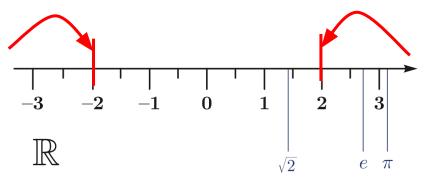
Important: continuous action spaces are usually bounded.

Solution: clipping (when prediction falls outside range, simply act as if it was at the boundary)

Direct map S to p(A) or A

Continuous action space

- Deterministic policy: simply predict a real number



Important: continuous action spaces are usually bounded.

Solution: clipping (when prediction falls outside range, simply act as if it was at the boundary)

Direct map S to p(A) or A

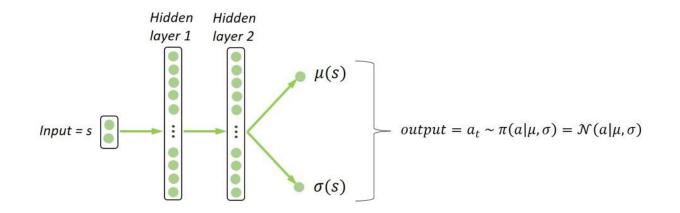
Continuous action space

- Stochastic policy: predict the parameters of a continuous distribution!

Direct map S to p(A) or A

Continuous action space

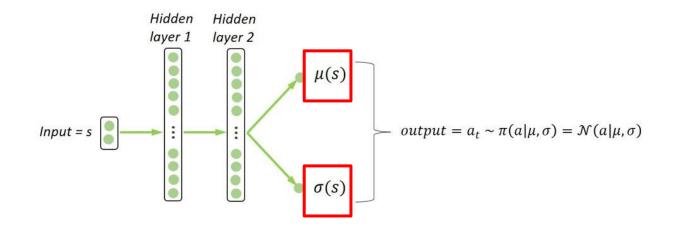
- Stochastic policy: predict the parameters of a continuous distribution!



Direct map S to p(A) or A

Continuous action space

- Stochastic policy: predict the parameters of a continuous distribution!



Direct map S to p(A) or A

Continuous action space

- Stochastic policy: predict the parameters of a continuous distribution!

$$\mu_{\theta}(s) = f_{\theta}(s)$$

 $\sigma_{\theta}(s) = \exp f_{\theta}(s) \text{ or } \sigma_{\theta}(s) = \operatorname{softplus}(f_{\theta}(s))$

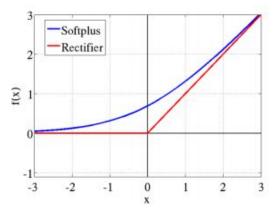
Direct map S to p(A) or A

Continuous action space

- Stochastic policy: predict the parameters of a continuous distribution!

$$\mu_{ heta}(s) = f_{ heta}(s)$$

$$\sigma_{\theta}(s) = \exp f_{\theta}(s)$$
 or $\sigma_{\theta}(s) = \text{softplus}(f_{\theta}(s))$



Some parameters have restrictions, e.g., a standard deviation should be positive

Actor-critic (= value + policy)

Can combine an explicit policy and a value network!

Actor-critic (= value + policy)

Can combine an explicit policy and a value network!

Usually the value function will help the policy update:

- 1. For bootstrapping
- 2. For baseline subtraction
- 3. As a direct target to maximize

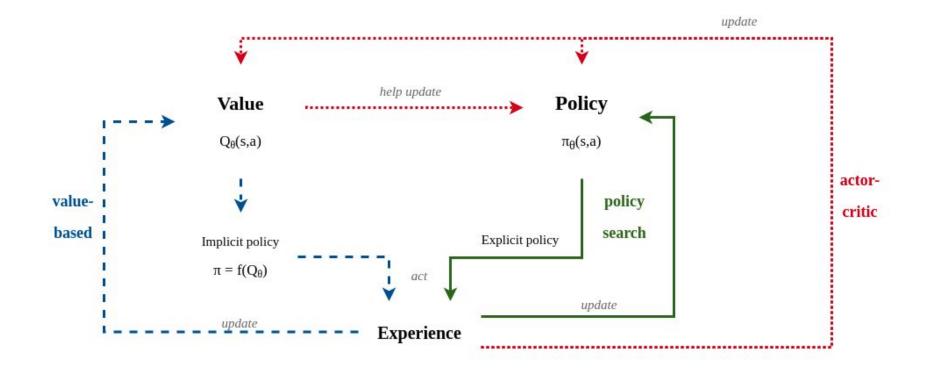
Actor-critic (= value + policy)

Can combine an explicit policy and a value network!

Usually the value function will help the policy update:

- 1. For bootstrapping
- 2. For baseline subtraction
- 3. As a direct target to maximize

We will encounter these settings after the break



		Discrete action space	Continuous action space
Value-based	Stochastic	e.g., $\pi_{\theta}(a s) = \epsilon$ -greedy $(Q_{\theta}(s, a))$	(-)°
	Deterministic	e.g., $\pi_{\theta}(s) = \arg \max_{a} Q_{\theta}(s, a)$	(-)°
Policy search	Stochastic	e.g. $\pi_{\theta}(a s) = \operatorname{softmax}(f_{\theta}(s,a))$	e.g., $\pi_{\theta}(a s) = \mathcal{N}(\mu_{\theta}(s), \sigma_{\theta}(s))$
	Deterministic	(-)△	e.g., $\pi_{\theta}(s) = f_{\theta}(s)$
Actor-critic	Stochastic	e.g. $\pi_{\theta}(a s) = \operatorname{softmax}(f_{\theta}(s, a))$ & $V_{\theta}(s) = f_{\theta}(s)$	e.g., $\pi_{\theta}(a s) = \mathcal{N}(\mu_{\theta}(s), \sigma_{\theta}(s))$ & $V_{\theta}(s) = f_{\theta}(s)$
	Deterministic	(-)△	e.g., $\pi_{\theta}(s) == f_{\theta}(s)$ & $V_{\theta}(s) = g_{\theta}(s)$

Property of environment

	Discrete action space	Continuous action space
Stochastic	e.g., $\pi_{\theta}(a s) = \epsilon$ -greedy $(Q_{\theta}(s, a))$	(-)°
Deterministic	e.g., $\pi_{\theta}(s) = \arg \max_{a} Q_{\theta}(s, a)$	(-)°
Stochastic	e.g. $\pi_{\theta}(a s) = \operatorname{softmax}(f_{\theta}(s,a))$	e.g., $\pi_{\theta}(a s) = \mathcal{N}(\mu_{\theta}(s), \sigma_{\theta}(s))$
Deterministic	(-)^	e.g., $\pi_{ heta}(s) = f_{ heta}(s)$
Stochastic	e.g. $\pi_{\theta}(a s) = \operatorname{softmax}(f_{\theta}(s, a))$ & $V_{\theta}(s) = f_{\theta}(s)$	e.g., $\pi_{\theta}(a s) = \mathcal{N}(\mu_{\theta}(s), \sigma_{\theta}(s))$ & $V_{\theta}(s) = f_{\theta}(s)$
Deterministic	(-)△	$egin{aligned} ext{e.g.}, \pi_ heta(s) &== f_ heta(s) \ \& V_ heta(s) &= g_ heta(s) \end{aligned}$
	Deterministic Stochastic Deterministic Stochastic	Stochastice.g., $\pi_{\theta}(a s) = \epsilon$ -greedy $(Q_{\theta}(s, a))$ Deterministice.g., $\pi_{\theta}(s) = \arg \max_{a} Q_{\theta}(s, a)$ Stochastice.g. $\pi_{\theta}(a s) = \operatorname{softmax}(f_{\theta}(s, a))$ Deterministic $(-)^{\triangle}$ Stochastice.g. $\pi_{\theta}(a s) = \operatorname{softmax}(f_{\theta}(s, a))$ $\& V_{\theta}(s) = f_{\theta}(s)$

Property of environment

			Discrete action space	Continuous action space
	Value-based	Stochastic	e.g., $\pi_{\theta}(a s) = \epsilon$ -greedy $(Q_{\theta}(s, a))$	(-)°
Own		Deterministic	e.g., $\pi_{\theta}(s) = \arg \max_{a} Q_{\theta}(s, a)$	(-)°
choices	Policy search	Stochastic	e.g. $\pi_{\theta}(a s) = \operatorname{softmax}(f_{\theta}(s,a))$	e.g., $\pi_{\theta}(a s) = \mathcal{N}(\mu_{\theta}(s), \sigma_{\theta}(s))$
		Deterministic	(-)△	e.g., $\pi_{\theta}(s) = f_{\theta}(s)$
	Actor-critic	Stochastic	e.g. $\pi_{\theta}(a s) = \operatorname{softmax}(f_{\theta}(s, a))$ & $V_{\theta}(s) = f_{\theta}(s)$	e.g., $\pi_{\theta}(a s) = \mathcal{N}(\mu_{\theta}(s), \sigma_{\theta}(s))$ & $V_{\theta}(s) = f_{\theta}(s)$
		Deterministic	(-)△	e.g., $\pi_{\theta}(s) == f_{\theta}(s)$ & $V_{\theta}(s) = g_{\theta}(s)$

Property of environment

			Discrete action space	Continuous action space
	Value-based	Stochastic	e.g., $\pi_{\theta}(a s) = \epsilon$ -greedy $(Q_{\theta}(s, a))$	(-)°
Own		Deterministic	e.g., $\pi_{\theta}(s) = \arg \max_{a} Q_{\theta}(s, a)$	(-)°
choices	Policy search	Stochastic	e.g. $\pi_{\theta}(a s) = \operatorname{softmax}(f_{\theta}(s,a))$	e.g., $\pi_{\theta}(a s) = \mathcal{N}(\mu_{\theta}(s), \sigma_{\theta}(s))$
		Deterministic	(-)△	e.g., $\pi_{\theta}(s) = f_{\theta}(s)$
	Actor-critic	Stochastic	e.g. $\pi_{\theta}(a s) = \operatorname{softmax}(f_{\theta}(s, a))$ & $V_{\theta}(s) = f_{\theta}(s)$	e.g., $\pi_{\theta}(a s) = \mathcal{N}(\mu_{\theta}(s), \sigma_{\theta}(s))$ & $V_{\theta}(s) = f_{\theta}(s)$
		Deterministic	(-)△	$egin{aligned} ext{e.g.},\pi_{ heta}(s) &== f_{ heta}(s) \ \& V_{ heta}(s) &= g_{ heta}(s) \end{aligned}$

No need to understand this now, full summary in lecture notes

1. **Continuous state space:**

2. **Continuous action space**:

1. **Continuous state space:**

Small = discretization, large = function approximation

2. Continuous action space:

1. **Continuous state space:**

Small = discretization, large = function approximation

2. Continuous action space:

Requires an explicit policy

	Implicit policy $\pi = f(Q_{\theta}(s, a))$	Explicit policy $\pi_{\theta}(a s)$
Discrete action space	\checkmark	\checkmark
Continuous action space		\checkmark

1. **Continuous state space:**

Small = discretization, large = function approximation

2. Continuous action space:

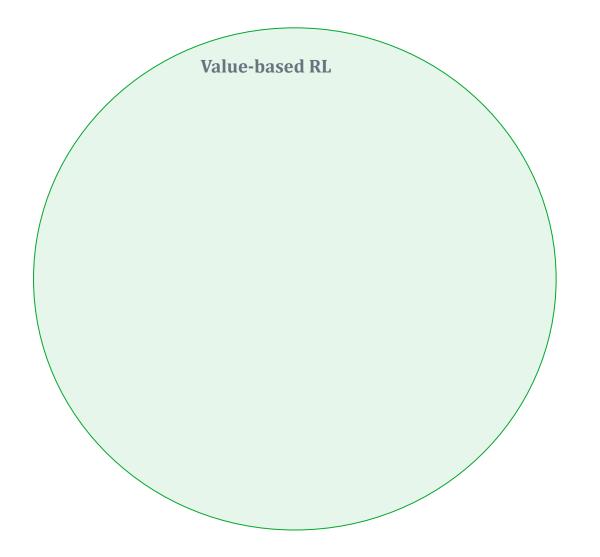
Requires an explicit policy

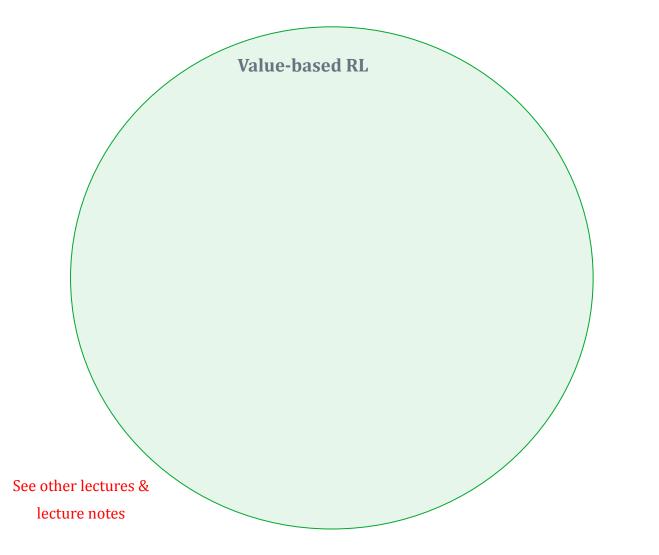
	Implicit policy $\pi = f(Q_{\theta}(s, a))$	Explicit policy $\pi_{\theta}(a s)$	
Discrete action space	\checkmark	\checkmark	
Continuous action space		\checkmark	

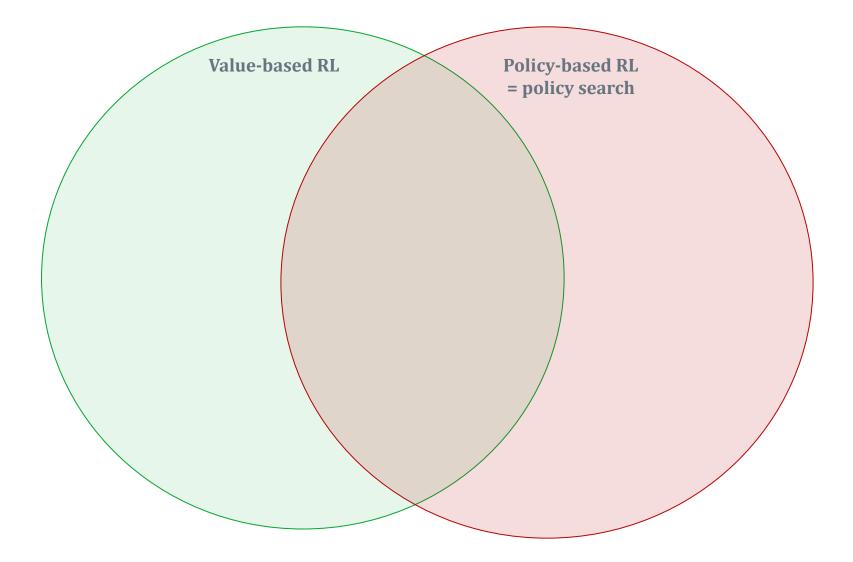
After break: policy-based RL methods

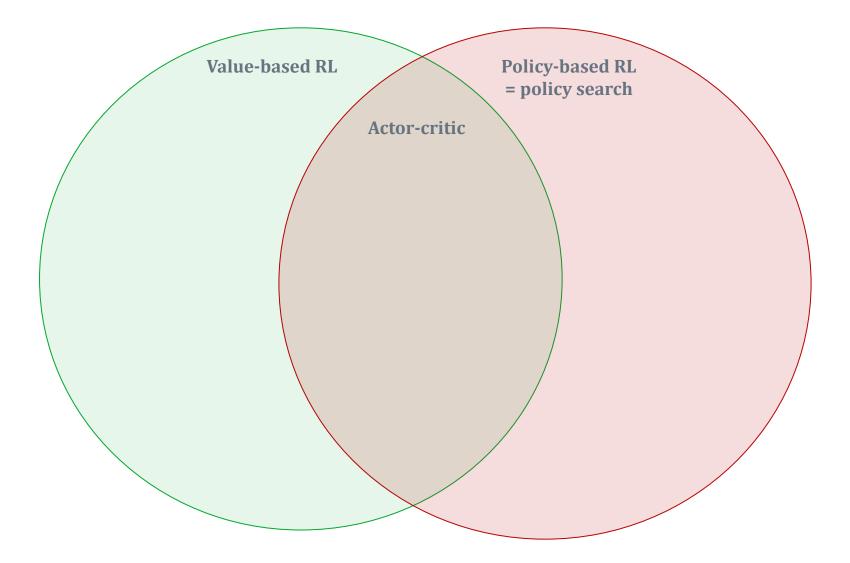
Break

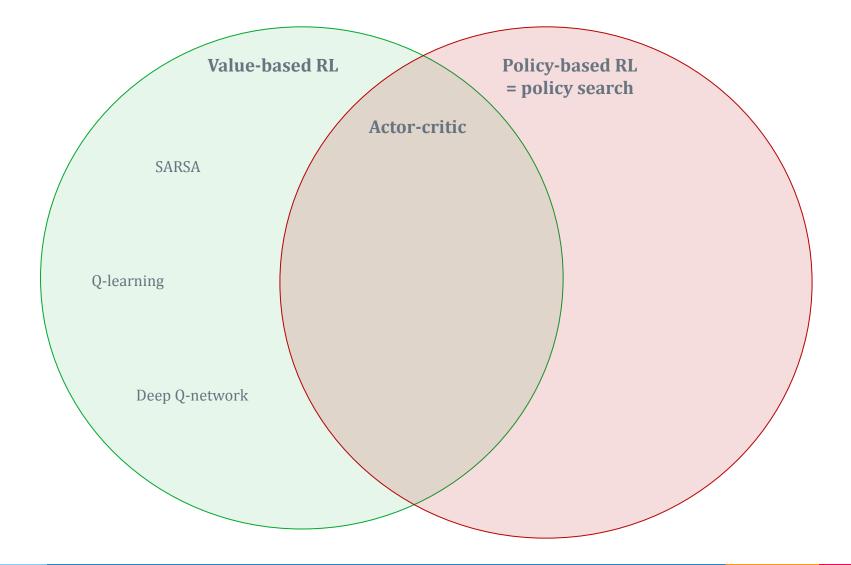
Policy search

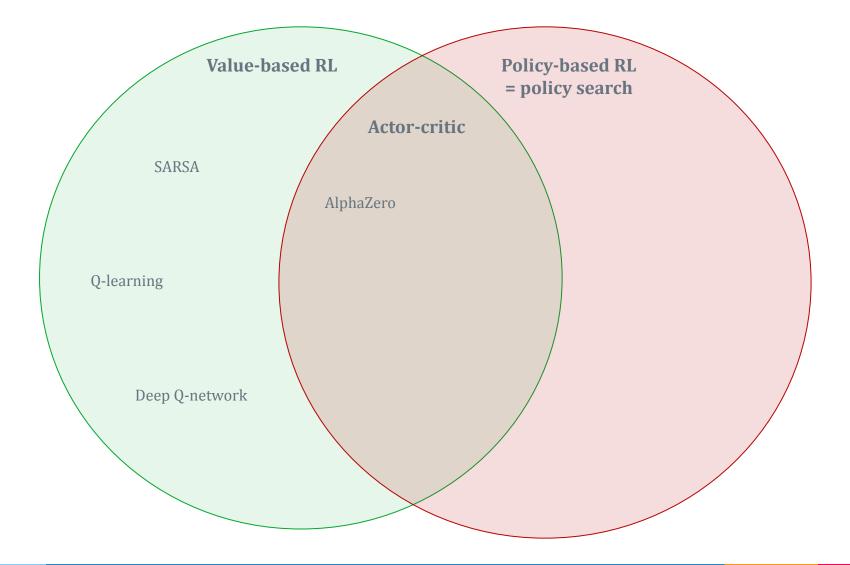


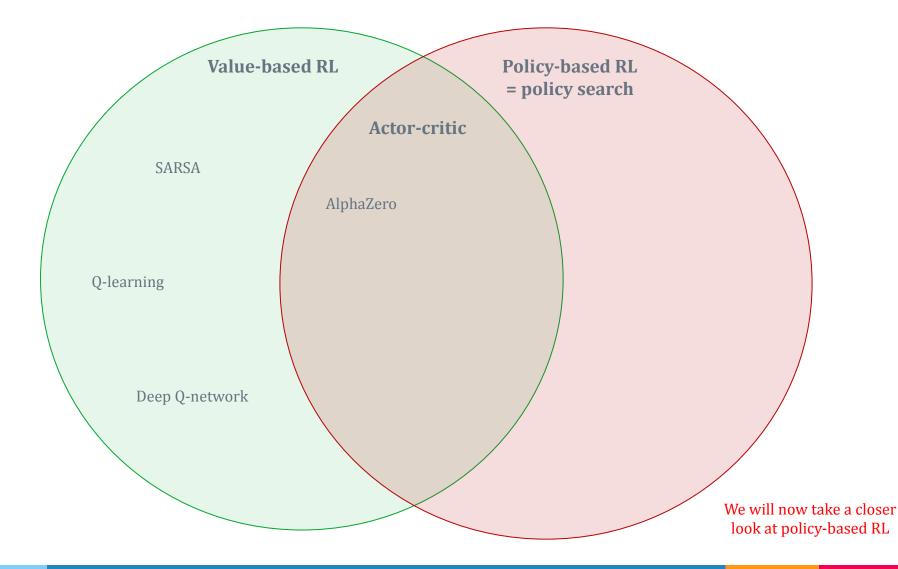












Maximize the expected cumulative return from the start (w.r.t policy parameters θ)

Maximize the expected cumulative return from the start (w.r.t policy parameters θ)

$$J(\theta) = V^{\pi}(s_0) = \mathbb{E}_{h_0 \sim p_{\theta}(h_0)} \left[R(h_0) \right]$$

Maximize the expected cumulative return from the start (w.r.t policy parameters θ)

$$J(\theta) = V^{\pi}(s_0) = \mathbb{E}_{h_0 \sim p_{\theta}(h_0)} \left[R(h_0) \right]$$

Optimization problem (find optimal policy parameters θ)

Maximize the expected cumulative return from the start (w.r.t policy parameters θ)

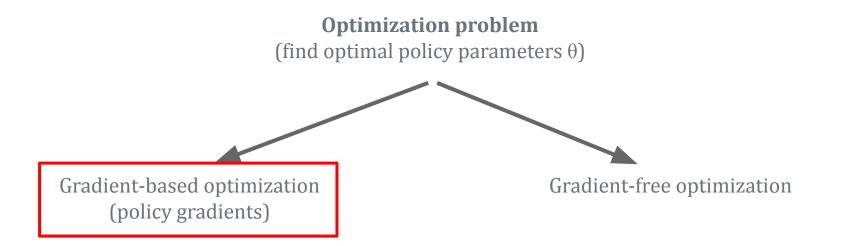
$$J(\theta) = V^{\pi}(s_0) = \mathbb{E}_{h_0 \sim p_{\theta}(h_0)} \Big[R(h_0) \Big]$$

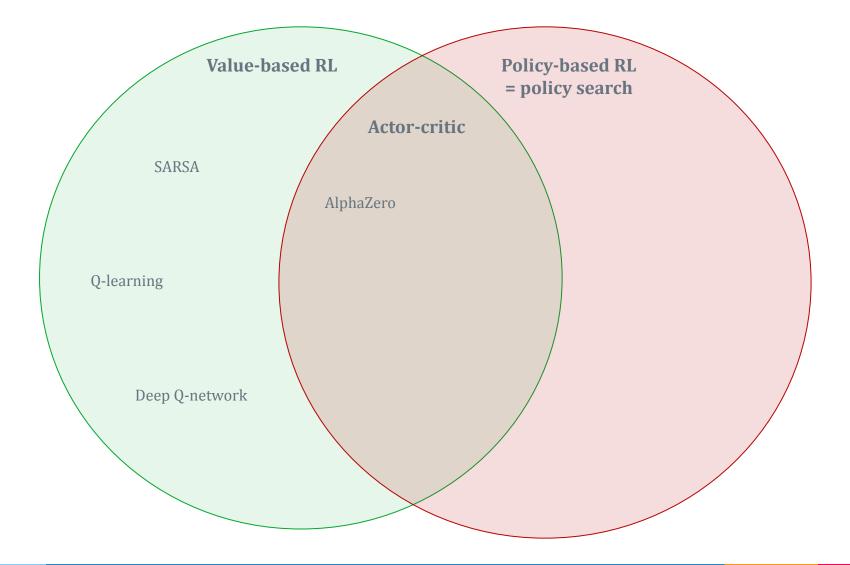
Optimization problem (find optimal policy parameters θ)

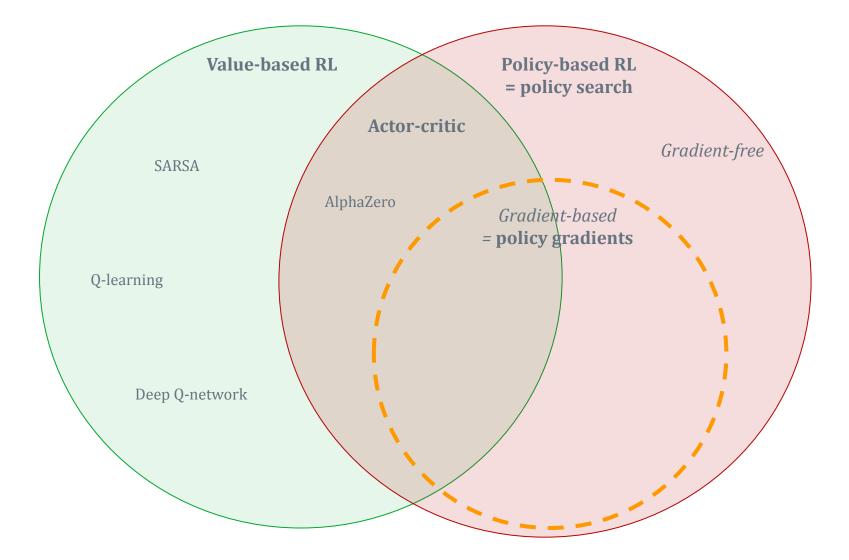
Gradient-based optimization (policy gradients) Gradient-free optimization

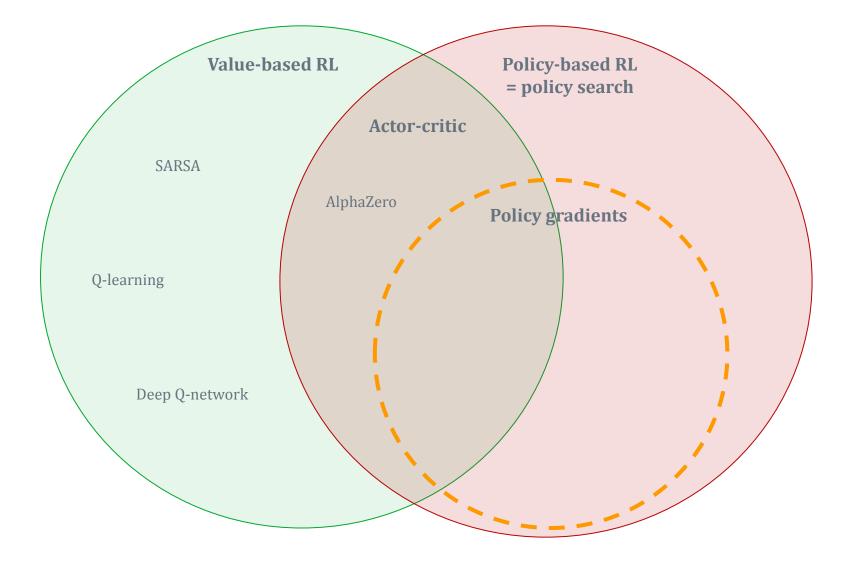
Maximize the expected cumulative return from the start (w.r.t policy parameters θ)

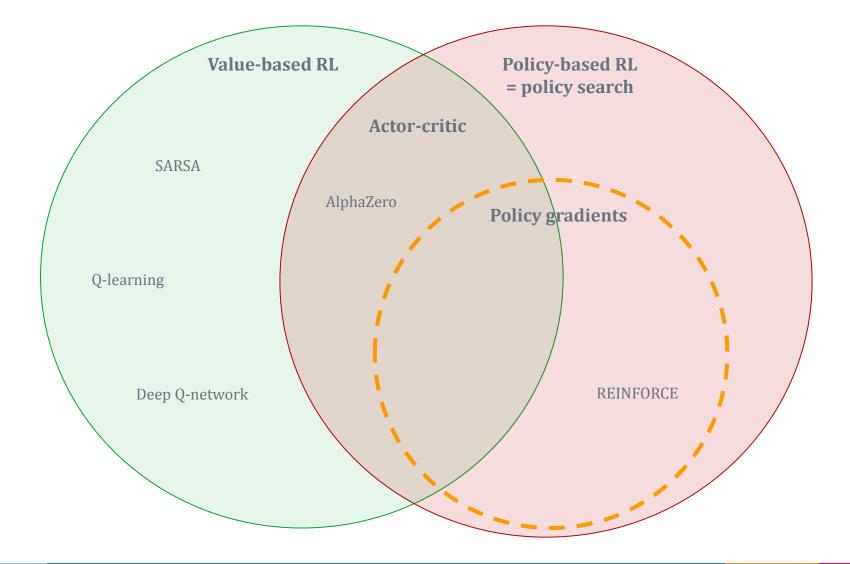
$$J(\theta) = V^{\pi}(s_0) = \mathbb{E}_{h_0 \sim p_{\theta}(h_0)} \left[R(h_0) \right]$$

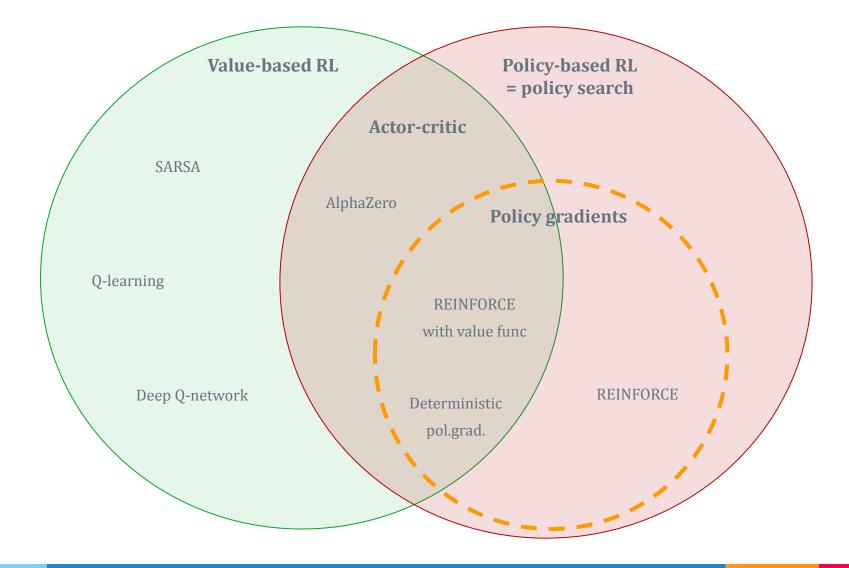


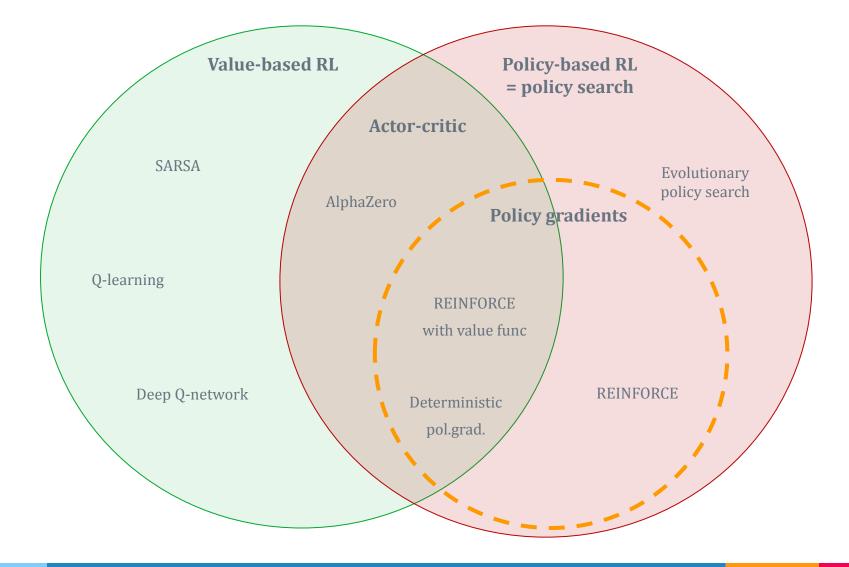












4. Policy gradients

Gradient ascent

Objective

Gradient ascent (pseudocode)

 $\mathop{\arg\max}_{\theta} J(\theta)$

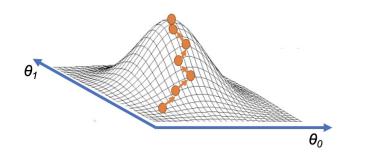
Gradient ascent

Objective

Gradient ascent (pseudocode)

 $\underset{\theta}{\arg\max} J(\theta)$

repeat $\mid \theta \leftarrow \theta + \eta \cdot \nabla_{\theta} J(\theta)$ **until** θ converges;



Gradient ascent

Objective

Gradient ascent (pseudocode)

 $\underset{\theta}{\arg\max} J(\theta)$

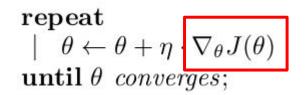
 $\begin{array}{c} \textbf{repeat} \\ \mid \theta \leftarrow \theta + \eta \cdot \nabla_{\theta} J(\theta) \\ \textbf{until } \theta \ converges; \end{array}$

Gradient ascent

Objective

Gradient ascent (pseudocode)

 $\underset{\theta}{\arg\max} J(\theta)$



$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{h_0 \sim p_{\theta}(h_0)} \Big[R(h_0) \Big]$$

We will derive the gradient of the expected return w.r.t the policy parameters

Gradient ascent

Objective

Gradient ascent (pseudocode)

 $\underset{\theta}{\arg\max} J(\theta)$

 $\begin{array}{c} \textbf{repeat} \\ \mid \ \theta \leftarrow \theta + \eta \cdot \nabla_{\theta} J(\theta) \\ \textbf{until} \ \theta \ converges; \end{array}$

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{h_0 \sim p_{\theta}(h_0)} \Big[R(h_0) \Big]$$

We need a derivative of an expectation: appears all over machine learning!

Interested in derivative of expectation:

 $\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta}(x)}[f(x)]$

Interested in derivative of expectation:

 $\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta}(x)}[f(x)]$

We will use the log derivative identity: (*derivative of log + chain rule*)

$$abla_x \log g(x) = rac{
abla_x g(x)}{g(x)}$$

Interested in derivative of expectation:

 $\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta}(x)}[f(x)]$

$$\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta}(x)}[f(x)] = \nabla_{\theta} \sum_{x} f(x) \cdot p_{\theta}(x)$$

definition of expectation

Interested in derivative of expectation:

 $\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta}(x)}[f(x)]$

$$\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta}(x)} [f(x)] = \nabla_{\theta} \sum_{x} f(x) \cdot p_{\theta}(x)$$
$$= \sum_{x} f(x) \cdot \nabla_{\theta} p_{\theta}(x)$$

definition of expectation

push gradient through sum

Interested in derivative of expectation:

 $\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta}(x)}[f(x)]$

$$\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta}(x)} [f(x)] = \nabla_{\theta} \sum_{x} f(x) \cdot p_{\theta}(x)$$
$$= \sum_{x} f(x) \cdot \nabla_{\theta} p_{\theta}(x)$$
$$= \sum_{x} f(x) \cdot p_{\theta}(x) \cdot \frac{\nabla_{\theta} p_{\theta}(x)}{p_{\theta}(x)}$$

definition of expectation

push gradient through sum

multiply and divide by $p_{\theta}(x)$

Interested in derivative of expectation:

 $\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta}(x)}[f(x)]$

$$\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta}(x)} [f(x)] = \nabla_{\theta} \sum_{x} f(x) \cdot p_{\theta}(x) \qquad \text{definition of expectation}$$
$$= \sum_{x} f(x) \cdot \nabla_{\theta} p_{\theta}(x) \qquad \text{push gradient through sum}$$
$$= \sum_{x} f(x) \cdot p_{\theta}(x) \cdot \frac{\nabla_{\theta} p_{\theta}(x)}{p_{\theta}(x)} \qquad \text{multiply and divide by } p_{\theta}(x)$$
$$= \sum_{x} f(x) \cdot p_{\theta}(x) \cdot \nabla_{\theta} \log p_{\theta}(x) \qquad \text{log-derivative rule (Eq. 11)}$$

Interested in derivative of expectation:

 $\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta}(x)}[f(x)]$

$$\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta}(x)}[f(x)] = \nabla_{\theta} \sum_{x} f(x) \cdot p_{\theta}(x) \qquad \text{definition of expectation}$$

$$= \sum_{x} f(x) \cdot \nabla_{\theta} p_{\theta}(x) \qquad \text{push gradient through sum}$$

$$= \sum_{x} f(x) \cdot p_{\theta}(x) \cdot \frac{\nabla_{\theta} p_{\theta}(x)}{p_{\theta}(x)} \qquad \text{multiply and divide by } p_{\theta}(x)$$

$$= \sum_{x} f(x) \cdot p_{\theta}(x) \cdot \nabla_{\theta} \log p_{\theta}(x) \qquad \text{log-derivative rule (Eq. 11)}$$

$$= \mathbb{E}_{x \sim p_{\theta}(x)}[f(x) \cdot \nabla_{\theta} \log p_{\theta}(x)] \qquad \text{rewrite into expectation}$$

1. <u>Log derivative trick</u>

$$\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta}(x)}[f(x)] = \mathbb{E}_{x \sim p_{\theta}(x)}[f(x) \cdot \nabla_{\theta} \log p_{\theta}(x)]$$

1. <u>Log derivative trick</u>

$$\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta}(x)}[f(x)] = \mathbb{E}_{x \sim p_{\theta}(x)}[f(x) \cdot \nabla_{\theta} \log p_{\theta}(x)]$$

Many other names:

- Reinforcement learning: **REINFORCE**
- Statistics: score function estimator, likelihood ratio method
- Machine learning: black-box variational inference

1. <u>Log derivative trick</u>

$$\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta}(x)}[f(x)] = \mathbb{E}_{x \sim p_{\theta}(x)}[f(x) \cdot \nabla_{\theta} \log p_{\theta}(x)]$$

Many other names:

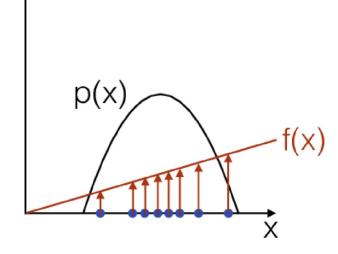
- Reinforcement learning: **REINFORCE**
- Statistics: score function estimator, likelihood ratio method
- Machine learning: black-box variational inference

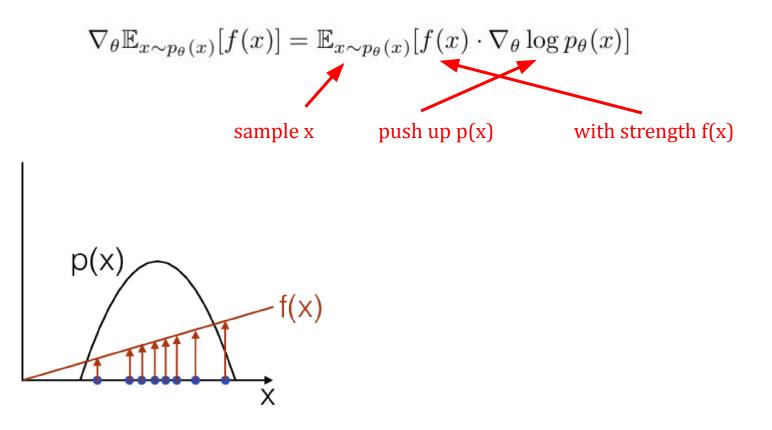
2. <u>Reparametrization trick</u>

[not in this course, but e.g. used in variational auto-encoders (deep learning)]

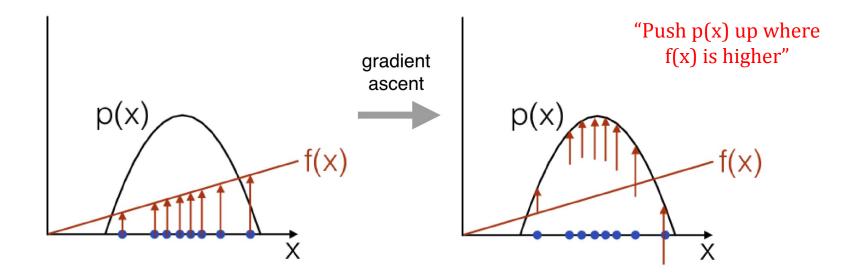
$$\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta}(x)}[f(x)] = \mathbb{E}_{x \sim p_{\theta}(x)}[f(x) \cdot \nabla_{\theta} \log p_{\theta}(x)]$$

$$\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta}(x)}[f(x)] = \mathbb{E}_{x \sim p_{\theta}(x)}[f(x) \cdot \nabla_{\theta} \log p_{\theta}(x)]$$



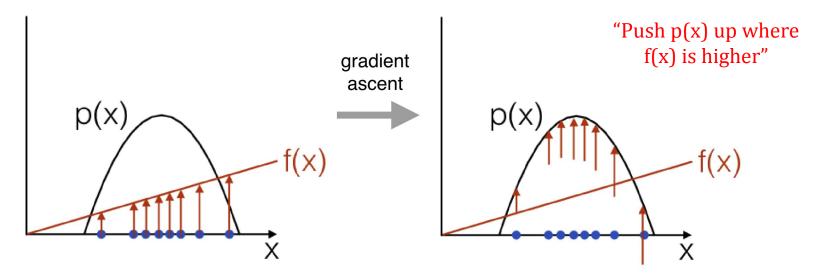


$$\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta}(x)}[f(x)] = \mathbb{E}_{x \sim p_{\theta}(x)}[f(x) \cdot \nabla_{\theta} \log p_{\theta}(x)]$$



Lot of equations, but what does intuitively happen with this gradient?

$$\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta}(x)}[f(x)] = \mathbb{E}_{x \sim p_{\theta}(x)}[f(x) \cdot \nabla_{\theta} \log p_{\theta}(x)]$$



= "zero-order gradient"

 $\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{h_0 \sim p_{\theta}(h_0)} \Big[R(h_0) \Big]$

Definition of objective

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{h_0 \sim p_{\theta}(h_0)} \Big[R(h_0) \Big]$$
$$= \mathbb{E}_{h_0 \sim p_{\theta}(h_0)} \Big[R(h_0) \cdot \nabla_{\theta} \log p_{\theta}(h_0) \Big]$$

Definition of objective

Log-derivative trick (Eq. 12)

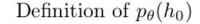
Simply apply the log-derivative trick!

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{h_0 \sim p_{\theta}(h_0)} \left[R(h_0) \right] \qquad \text{Definition of objective}$$
$$= \mathbb{E}_{h_0 \sim p_{\theta}(h_0)} \left[R(h_0) \left[\nabla_{\theta} \log p_{\theta}(h_0) \right] \right] \qquad \text{Log-derivative trick (Eq. 12)}$$
$$\text{Still need to find the}_{derivative of the trace}_{probability}$$

$$\nabla_{\theta} \log p_{\theta}(h_0) = \nabla_{\theta} \log \left[p_0(s_0) \prod_{t=0}^n \pi_{\theta}(a_t | s_t) \cdot T(s_{t+1} | s_t, a_t) \right]$$

Definition of
$$p_{\theta}(h_0)$$





$$\nabla_{\theta} \log p_{\theta}(h_0) = \nabla_{\theta} \log \left[p_0(s_0) \prod_{t=0}^n \pi_{\theta}(a_t | s_t) \cdot T(s_{t+1} | s_t, a_t) \right]$$
 Definition of $p_{\theta}(h_0)$
$$= \nabla_{\theta} \left[\log p_0(s_0) + \sum_{t=0}^n \log \pi_{\theta}(a_t | s_t) + \sum_{t=0}^n \log T(s_{t+1} | s_t, a_t) \right]$$
 Log of product

$$\nabla_{\theta} \log p_{\theta}(h_0) = \nabla_{\theta} \log \left[p_0(s_0) \prod_{t=0}^n \pi_{\theta}(a_t | s_t) \cdot T(s_{t+1} | s_t, a_t) \right]$$
 Definition of $p_{\theta}(h_0)$
$$= \nabla_{\theta} \left[\log p(s_0) + \sum_{t=0}^n \log \pi_{\theta}(a_t | s_t) + \sum_{t=0}^n \log p(s_t) + \sum_{t=0}^n \log p(s_t) \right]$$
 Log of product

Derivative does not depend on (unknown) initial state distribution and transition distribution

$$\nabla_{\theta} \log p_{\theta}(h_0) = \nabla_{\theta} \log \left[p_0(s_0) \prod_{t=0}^n \pi_{\theta}(a_t | s_t) \cdot T(s_{t+1} | s_t, a_t) \right]$$
Definition of $p_{\theta}(h_0)$
$$= \nabla_{\theta} \left[\log p_0(s_0) + \sum_{t=0}^n \log \pi_{\theta}(a_t | s_t) + \sum_{t=0}^n \log T(s_{t+1} | s_t, a_t) \right]$$
Log of product
$$= \sum_{t=0}^n \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$
Dependence on θ

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{h_0 \sim p_{\theta}(h_0)} \Big[R(h_0) \Big]$$
$$= \mathbb{E}_{h_0 \sim p_{\theta}(h_0)} \Big[R(h_0) \ \nabla_{\theta} \log p_{\theta}(h_0) \Big]$$

Definition of objective

Log-derivative trick (Eq. 12)

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{h_0 \sim p_{\theta}(h_0)} \Big[R(h_0) \Big] \qquad \text{Definition of objective} \\ = \mathbb{E}_{h_0 \sim p_{\theta}(h_0)} \Big[R(h_0) \cdot \nabla_{\theta} \log p_{\theta}(h_0) \Big] \qquad \text{Log-derivative trick (Eq. 12)} \\ = \mathbb{E}_{h_0 \sim p_{\theta}(h_0)} \Big[R(h_0) \cdot \sum_{t=0}^n \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \Big] \qquad \text{Gradient of trace (Eq. 13)}$$

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{h_0 \sim p_{\theta}(h_0)} \Big[R(h_0) \Big] \qquad \text{Definition of objective} \\ = \mathbb{E}_{h_0 \sim p_{\theta}(h_0)} \Big[R(h_0) \cdot \nabla_{\theta} \log p_{\theta}(h_0) \Big] \qquad \text{Log-derivative trick (Eq. 12)} \\ = \mathbb{E}_{h_0 \sim p_{\theta}(h_0)} \Big[R(h_0) \cdot \sum_{t=0}^{n} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \Big] \qquad \text{Gradient of trace (Eq. 13)} \\ \hline \mathbf{Return of the}_{entire trace} \qquad \begin{array}{c} \text{Sum over}_{each timestep}_{in the trace} & \begin{array}{c} \text{Derivative of}_{log policy} \\ \text{log policy} \end{array}$$

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \mathbb{E}_{h_0 \sim p_{\theta}(h_0)} \Big[R(h_0) \Big] \qquad \text{Definition of objective} \\ = \mathbb{E}_{h_0 \sim p_{\theta}(h_0)} \Big[R(h_0) \cdot \nabla_{\theta} \log p_{\theta}(h_0) \Big] \qquad \text{Log-derivative trick (Eq. 12)} \\ = \mathbb{E}_{h_0 \sim p_{\theta}(h_0)} \Big[R(h_0) \cdot \sum_{t=0}^n \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \Big] \qquad \text{Gradient of trace (Eq. 13)}$$

Makes sense to move R(h₀) inside the sum, since return of action only depends on future rewards

a.k.a. **REINFORCE**

a.k.a. **REINFORCE**

$$abla_{ heta} \mathbb{E}_{h_0 \sim p_{ heta}(h_0)} \Big[R(h_0) \Big] = \mathbb{E}_{h_0 \sim p_{ heta}(h_0)} \Big[\sum_{t=0}^n R(h_t)
abla_{ heta} \log \pi_{ heta}(a_t | s_t) \Big]$$

a.k.a. **REINFORCE**

$$abla_{ heta} \mathbb{E}_{h_0 \sim p_{ heta}(h_0)} \Big[R(h_0) \Big] = \mathbb{E}_{h_0 \sim p_{ heta}(h_0)} \Big[\sum_{t=0}^n R(h_t)
abla_{ heta} \log \pi_{ heta}(a_t | s_t) \Big]$$

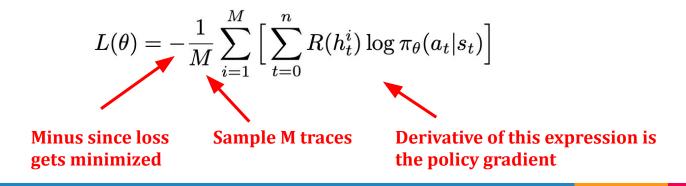
When you use automatic differentiation software, like Tensorflow or Pytorch, you would implement the following loss:

$$L(heta) = -rac{1}{M}\sum_{i=1}^{M} \Big[\sum_{t=0}^n R(h_t^i)\log \pi_ heta(a_t|s_t)\Big]$$

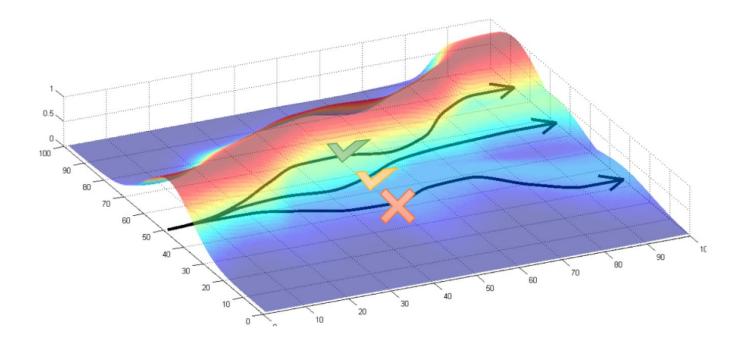
a.k.a. **REINFORCE**

$$\nabla_{\theta} \mathbb{E}_{h_0 \sim p_{\theta}(h_0)} \Big[R(h_0) \Big] = \mathbb{E}_{h_0 \sim p_{\theta}(h_0)} \Big[\sum_{t=0}^n R(h_t) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \Big]$$

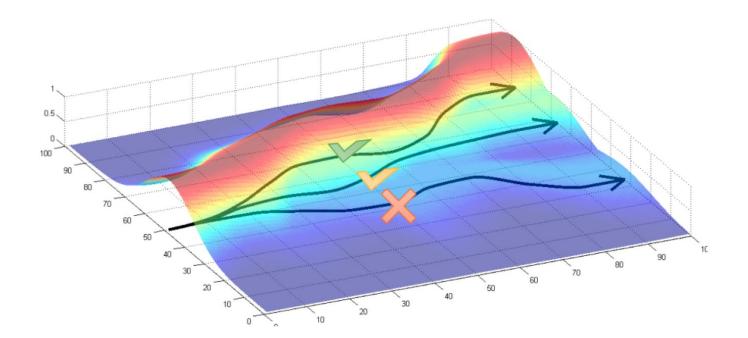
When you use automatic differentiation software, like Tensorflow or Pytorch, you would implement the following loss:



Interpretation of policy gradient

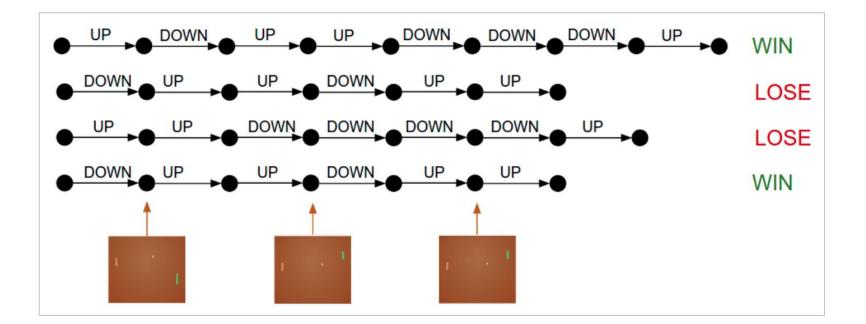


Interpretation of policy gradient

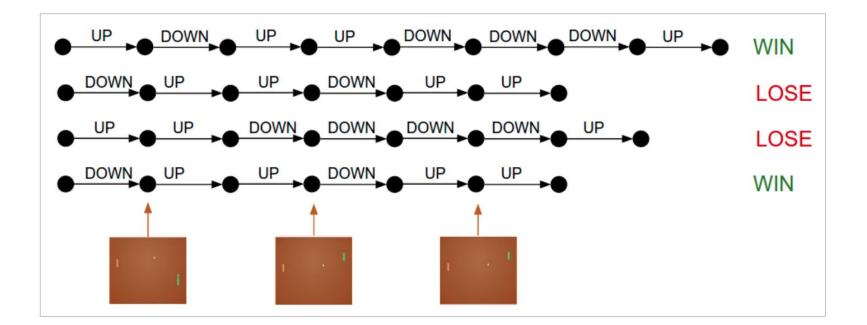


You "reinforce" the actions which give good returns

Interpretation of policy gradient



Interpretation of policy gradient



"Encourage each state-action pair in the successful traces" "Discourage each state-action pair in the unsuccessful traces"

Deterministic policy:

Stochastic policy:

Deterministic policy:

- Add noise, e.g., Gaussian:

 $\pi_{\theta, \text{behaviour}}(a|s) = \pi_{\theta}(s) + \mathcal{N}(0, \sigma)$

Stochastic policy:

Deterministic policy:

- Add noise, e.g., Gaussian: $\pi_{\theta, \text{behaviour}}(a|s) = \pi_{\theta}(s) + \mathcal{N}(0, \sigma)$

Stochastic policy:

- Simply sample from policy

$$\pi_{ heta, ext{behaviour}}(a|s) = \pi_{ heta}(a|s)$$

Deterministic policy:

- Add noise, e.g., Gaussian: $\pi_{\theta, \text{behaviour}}(a|s) = \pi_{\theta}(s) + \mathcal{N}(0, \sigma)$

Stochastic policy:

- Simply sample from policy

 $\pi_{\theta, \text{behaviour}}(a|s) = \pi_{\theta}(a|s)$ Risk of collapse!

Deterministic policy:

- Add noise, e.g., Gaussian: $\pi_{\theta, \text{behaviour}}(a|s) = \pi_{\theta}(s) + \mathcal{N}(0, \sigma)$

Stochastic policy:

- Simply sample from policy $\pi_{\theta, \text{behaviour}}(a|s) = \pi_{\theta}(a|s)$

Risk of collapse!

- Add entropy regularization

$$\pi_{ heta, ext{behaviour}}(a|s) = \pi_{ heta}(a|s)$$

$$abla_{ heta} J(heta) = \mathbb{E}_{h_0 \sim p_{ heta}(h_0)} \Big[\sum_{t=0}^n R_t
abla_{ heta} \log \pi_{ heta}(a_t|s_t) + \eta
abla_{ heta} H[\pi_{ heta}(a|s)] \Big]$$

Deterministic policy:

- Add noise, e.g., Gaussian: $\pi_{\theta, \text{behaviour}}(a|s) = \pi_{\theta}(s) + \mathcal{N}(0, \sigma)$

Stochastic policy:

- Simply sample from policy $\pi_{\theta, \text{behaviour}}(a|s) = \pi_{\theta}(a|s)$ Risk of σ
 - **Risk of collapse!**

- Add entropy regularization

$$\pi_{\theta, \text{behaviour}}(a|s) = \pi_{\theta}(a|s)$$

$$abla_{ heta} J(heta) = \mathbb{E}_{h_0 \sim p_{ heta}(h_0)} \Big[\sum_{t=0}^n R_t
abla_{ heta} \log \pi_{ heta}(a_t|s_t) + \eta
abla_{ heta} H[\pi_{ heta}(a|s)] \Big]$$

Optimize return but trade-off against high-entropy (broad) policy

Monte Carlo Policy Gradient

Algorithm 3: Monte Carlo policy gradient (REINFORCE)

```
Input: A differentiable policy \pi_{\theta}(a|s), parametrized by \theta \in \mathbb{R}^{d}.

A learning rate \eta.

Initialization: Randomly initialize \theta in \mathbb{R}^{d}.

while not converged do

\left|\begin{array}{c} \operatorname{grad} \leftarrow 0 \\ \operatorname{for} \ m \in 1, ..., M \ \operatorname{do} \\ \right| \quad \operatorname{Sample trace} \ h_{0} = \{s_{0}, a_{0}, r_{0}, s_{1}, ..., s_{n+1}\} \text{ following } \pi_{\theta}(a|s) \\ R \leftarrow 0 \\ \left| \begin{array}{c} \operatorname{for} \ t \in n, ..., 1, 0 \ \operatorname{do} \\ \right| \quad R \leftarrow r_{t} + \gamma \cdot R \\ \left| \begin{array}{c} \operatorname{grad} += R \cdot \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \end{array}\right| /* \text{ Add to total gradient } */ \\ \left| \begin{array}{c} \operatorname{end} \\ \theta \leftarrow \theta + \eta \cdot \operatorname{grad} \end{array}\right|
```

Algorithm in lecture notes!

Use a value function to potentially get a better policy gradient update

Use a value function to potentially get a better policy gradient update

Use a value function to potentially get a better policy gradient update

- 1. <u>Within policy gradient theorem</u>:
 - a. Bootstrapping lower variance in cumulative reward estimate

Use a value function to potentially get a better policy gradient update

- a. Bootstrapping lower variance in cumulative reward estimate
- b. Baseline subtraction lower variance in gradient estimate

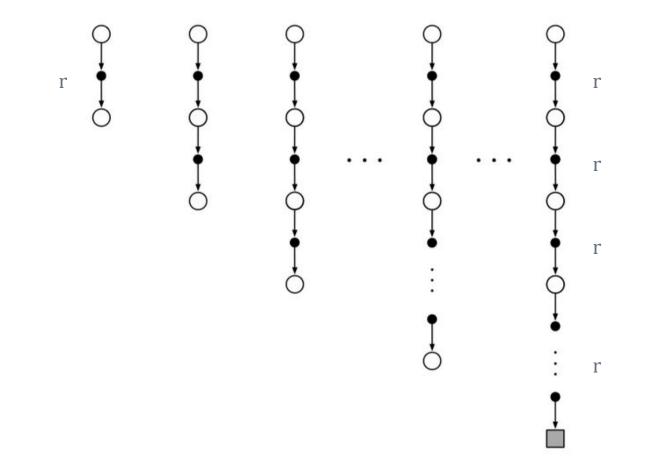
Use a value function to potentially get a better policy gradient update

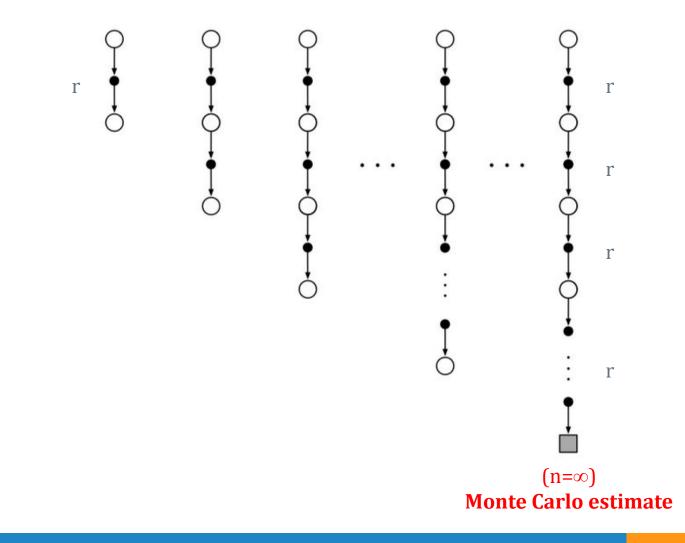
- a. Bootstrapping lower variance in cumulative reward estimate
- b. Baseline subtraction lower variance in gradient estimate
- 2. <u>Other type of update</u>:
 - a. Deterministic policy gradient

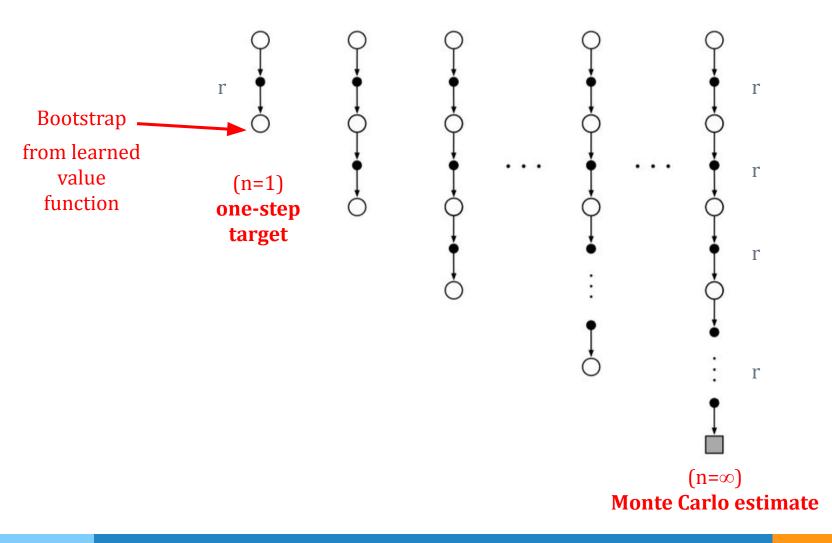
Use a value function to potentially get a better policy gradient update

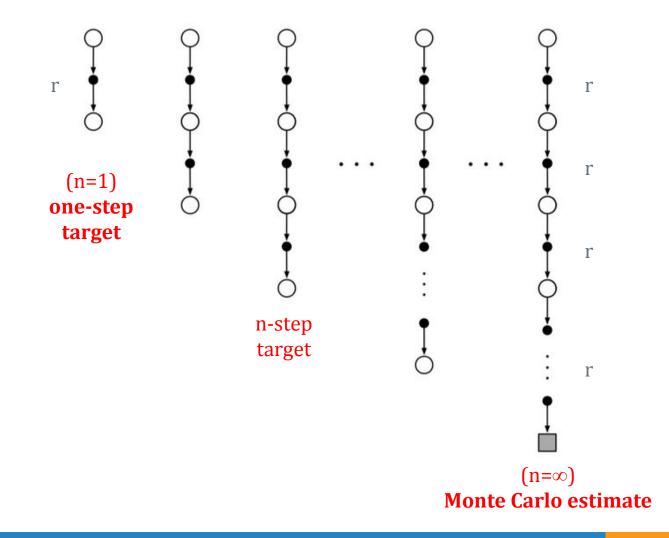
a.	Bootstrapping	lower variance in cumulative reward estimate
b.	Baseline subtraction	lower variance in gradient estimate

- 2. <u>Other type of update</u>:
 - a. Deterministic policy gradient









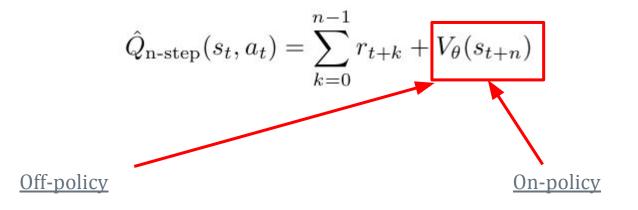
$$\hat{Q}_{n-\text{step}}(s_t, a_t) = \sum_{k=0}^{n-1} r_{t+k} + V_{\theta}(s_{t+n})$$

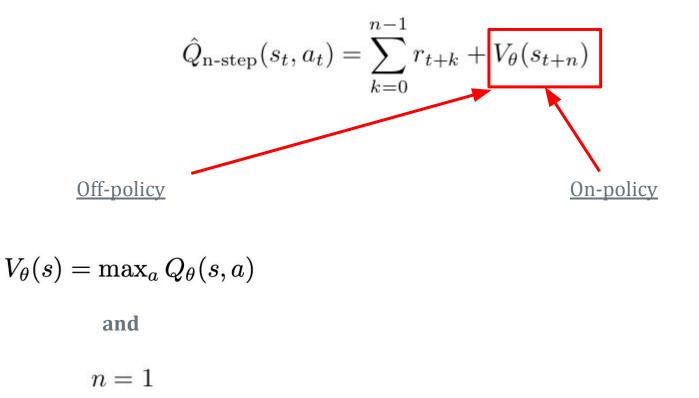
$$\hat{Q}_{n-\text{step}}(s_t, a_t) = \sum_{k=0}^{n-1} r_{t+k} + V_{\theta}(s_{t+n})$$

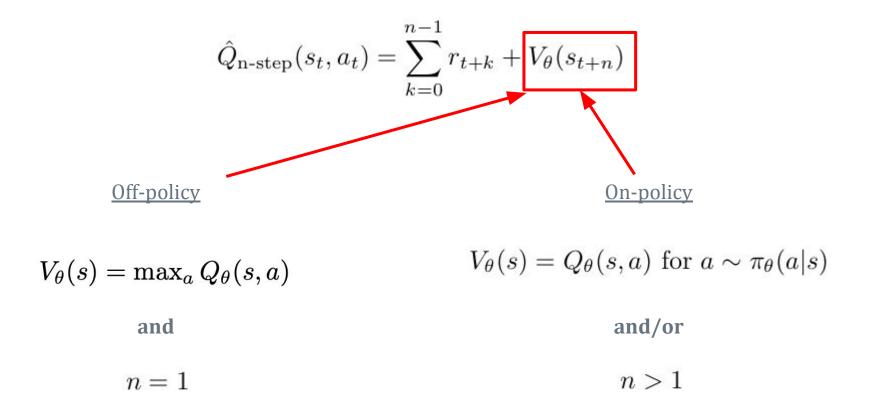
General formulation of cumulative reward estimation

$$\hat{Q}_{n-\text{step}}(s_t, a_t) = \sum_{k=0}^{n-1} r_{t+k} + V_{\theta}(s_{t+n})$$

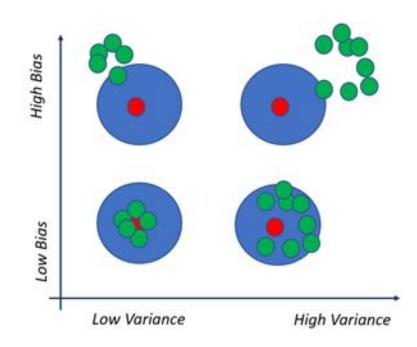
bootstrap (unless $n=\infty$)



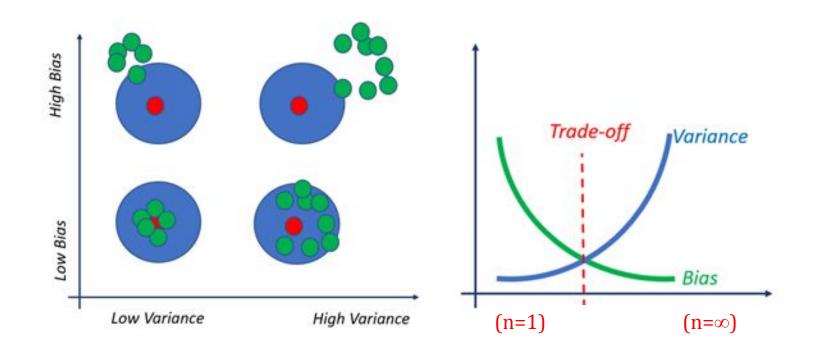




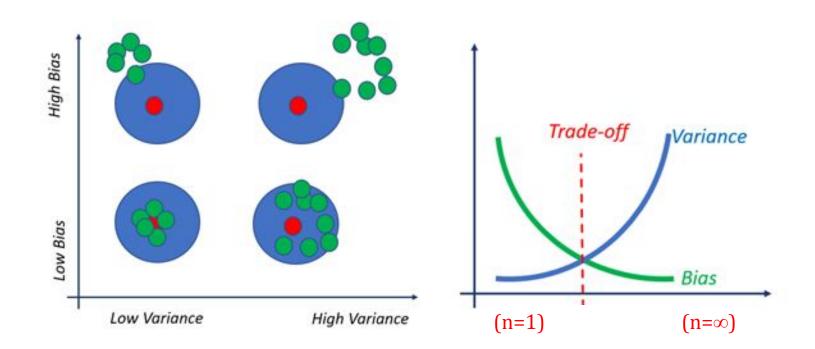
Why bootstrap?



Why bootstrap?



Why bootstrap?



Bias-variance trade-off for the return estimate depth (n)

1. Collect trace

- 1. Collect trace
- 2. Estimate cumulative return for each step in trace

$$\hat{Q}_{n}(s_{t}, a_{t}) = \sum_{k=0}^{n-1} r_{t+k} + V_{\phi}(s_{t+n})$$

- 1. Collect trace
- 2. Estimate cumulative return for each step in trace

$$\hat{Q}_{n}(s_{t}, a_{t}) = \sum_{k=0}^{n-1} r_{t+k} + V_{\phi}(s_{t+n})$$

3. Train value network, e.g., on squared loss

$$L(\phi|s_t, a_t) = \left(\hat{Q}_n(s_t, a_t) - V_{\phi}(s_t)\right)^2$$

- 1. Collect trace
- 2. Estimate cumulative return for each step in trace

$$\hat{Q}_{n}(s_{t}, a_{t}) = \sum_{k=0}^{n-1} r_{t+k} + V_{\phi}(s_{t+n})$$

3. Train value network, e.g., on squared loss

$$L(\phi|s_t, a_t) = \left(\hat{Q}_n(s_t, a_t) - V_{\phi}(s_t)\right)^2$$

4. Train policy with policy gradient

$$\nabla_{\theta} L(\theta|s_t, a_t) = \hat{Q}_n(s_t, a_t) \cdot \nabla_{\theta} \log \pi_{\theta}(a_t|s_t)]$$

Algorithm 4: Actor-critic policy gradient with bootstrapping **Input:** A policy $\pi_{\theta}(a|s)$, a value function $V_{\phi}(s)$ A estimation depth n, learning rate η , number of episode M. **Initialization**: Randomly initialize θ and ϕ . while not converged do $\mathbf{grad} \leftarrow 0$ for i = 1, ..., M do Sample trace $h_0 = \{s_0, a_0, r_0, s_1, \dots, s_{T+1}\}$ following $\pi_{\theta}(a|s)$ for t = 0..T do $| \hat{Q}_n(s_t, a_t) = \sum_{k=0}^{n-1} r_{t+k} + V_{\theta}(s_{t+n})$ /* *n*-step target */ end $\begin{array}{ll} \phi \leftarrow \phi - \eta \cdot \nabla_{\phi} \sum_{t} (\hat{Q}_{n}(s_{t}, a_{t}) - V_{\phi}(s_{t})^{2} & /* \text{ Update value } */\\ \theta \leftarrow \theta + \eta \cdot \sum_{t} [\hat{Q}_{n}(s_{t}, a_{t}) \cdot \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t})] & /* \text{ Update policy } */ \end{array}$ end **Return** $\pi_{\theta}(a|s)$

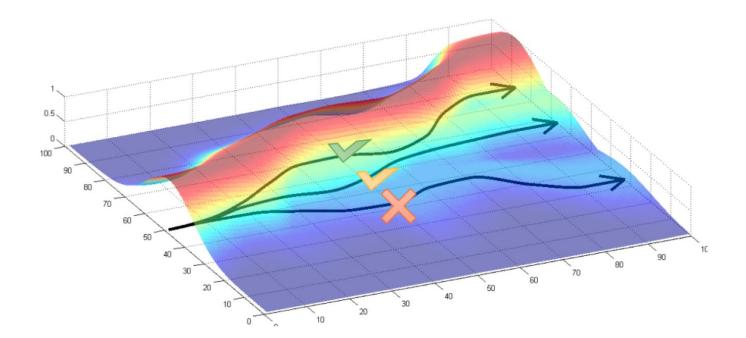
Full algorithm in lecture notes

Use a value function to potentially get a better policy gradient update

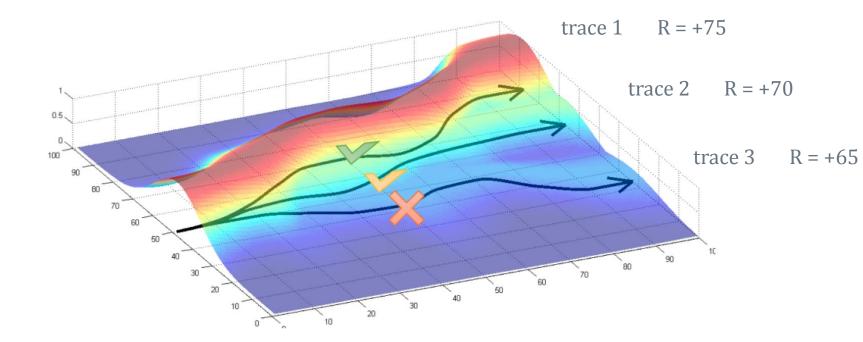
a.	Bootstrapping	lower variance in cumulative reward estimate
b.	Baseline subtraction	lower variance in gradient estimate

- 2. <u>Other type of update</u>:
 - a. Deterministic policy gradient

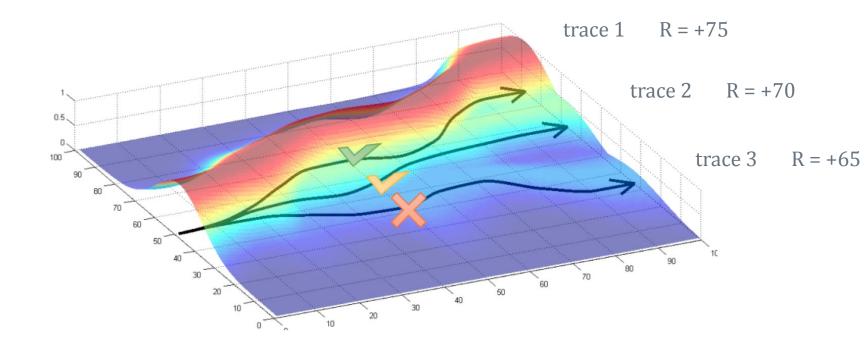
Baseline subtraction



Baseline subtraction

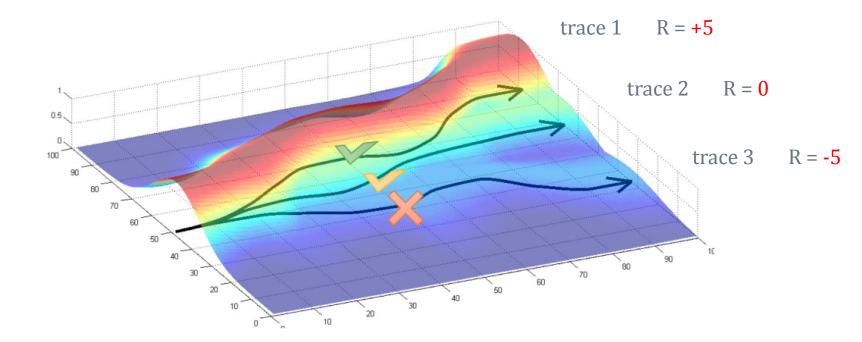


Baseline subtraction

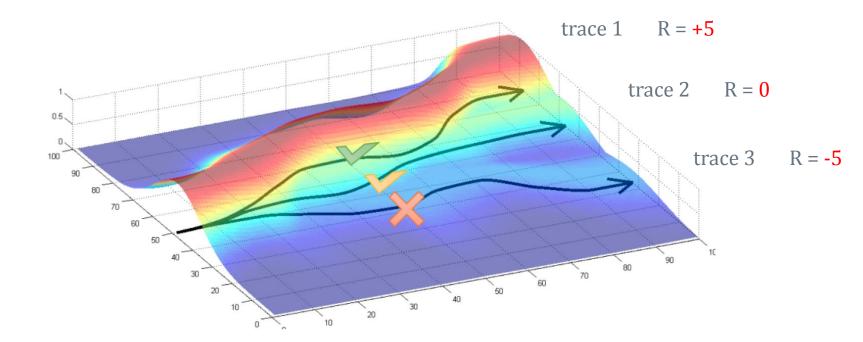


Probability of all actions will be pushed up, just trace 1 gets pushed harder (when we sample 3 without 1, then 3 will still go up)

Baseline subtraction



Baseline subtraction



Now it would work much better!

Advantage function

$$A(s_t, a_t) = Q(s_t, a_t) - V(s_t)$$

Advantage function

$$A(s_t, a_t) = Q(s_t, a_t) - V(s_t)$$

Most common baseline is state value: gives the "advantage", i.e., "how much better is an action than the state average"

Actor-critic PG with bootstrap & baseline

- 1. Collect trace
- 2. Estimate cumulative return for each step in trace

$$\hat{Q}_{n}(s_{t}, a_{t}) = \sum_{k=0}^{n-1} r_{t+k} + V_{\phi}(s_{t+n})$$

3. Train value network, e.g., on squared loss

$$L(\phi|s_t, a_t) = \left(\hat{Q}_n(s_t, a_t) - V_{\phi}(s_t)\right)^2$$

4. Train policy with policy gradient

$$\nabla_{\theta} L(\theta|s_t, a_t) = \hat{A}_n(s_t, a_t) \cdot \nabla_{\theta} \log \pi_{\theta}(a_t|s_t)$$
 with $\hat{A}_n(s_t, a_t) = \hat{Q}_n(s_t, a_t) - V_{\phi}(s_t)$

Actor-critic PG with bootstrap & baseline

- 1. Collect trace
- 2. Estimate cumulative return for each step in trace

$$\hat{Q}_{n}(s_{t}, a_{t}) = \sum_{k=0}^{n-1} r_{t+k} + V_{\phi}(s_{t+n})$$

3. Train value network, e.g., on squared loss

$$L(\phi|s_t, a_t) = \left(\hat{Q}_n(s_t, a_t) - V_{\phi}(s_t)\right)^2$$

4. Train policy with policy gradient

$$\nabla_{\theta} L(\theta|s_t, a_t) = \hat{A}_n(s_t, a_t) \cdot \nabla_{\theta} \log \pi_{\theta}(a_t|s_t)$$
 with $\hat{A}_n(s_t, a_t) = \hat{Q}_n(s_t, a_t) - V_{\phi}(s_t)$

$$abla_{ heta} J(heta) = \mathbb{E}_{h_0 \sim p_{ heta}(h_0)} \Big[\sum_{t=0}^n \Psi_t
abla_{ heta} \log \pi_{ heta}(a_t | s_t) \Big]$$

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{h_0 \sim p_{\theta}(h_0)} \Big[\sum_{t=0}^n \Psi_t \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \Big]$$

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{h_0 \sim p_{\theta}(h_0)} \Big[\sum_{t=0}^n \Psi_t \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \Big]$$

$$\Psi_t = \hat{Q}_{MC}(s_t, a_t) = \sum_{i=t}^{\infty} \gamma^i \cdot r_i$$

Monte Carlo target

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{h_0 \sim p_{\theta}(h_0)} \Big[\sum_{t=0}^n \Psi_t \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \Big]$$

$$\Psi_t = \hat{Q}_{MC}(s_t, a_t) = \sum_{i=t}^{\infty} \gamma^i \cdot r_i$$
 Monte Carlo target
$$\Psi_t = \hat{Q}_n(s_t, a_t) = \sum_{i=t}^{n-1} \gamma^i \cdot r_i + \gamma^n V_{\theta}(s_n)$$
 bootstrap (*n*-step target)

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{h_0 \sim p_{\theta}(h_0)} \Big[\sum_{t=0}^n \Psi_t \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \Big]$$

$$\begin{split} \Psi_t &= \hat{Q}_{MC}(s_t, a_t) = \sum_{i=t}^{\infty} \gamma^i \cdot r_i & \text{Monte Carlo target} \\ \Psi_t &= \hat{Q}_n(s_t, a_t) &= \sum_{i=t}^{n-1} \gamma^i \cdot r_i + \gamma^n V_{\theta}(s_n) & \text{bootstrap (n-step target)} \\ \Psi_t &= \hat{A}_{MC}(s_t, a_t) = \sum_{i=t}^{\infty} \gamma^i \cdot r_i - V_{\theta}(s_t) & \text{Baseline subtraction} \end{split}$$

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{h_0 \sim p_{\theta}(h_0)} \Big[\sum_{t=0}^n \Psi_t \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \Big]$$

$$\begin{split} \Psi_t &= \hat{Q}_{MC}(s_t, a_t) = \sum_{i=t}^{\infty} \gamma^i \cdot r_i & \text{Monte Carlo target} \\ \Psi_t &= \hat{Q}_n(s_t, a_t) &= \sum_{i=t}^{n-1} \gamma^i \cdot r_i + \gamma^n V_{\theta}(s_n) & \text{bootstrap } (n\text{-step target}) \\ \Psi_t &= \hat{A}_{MC}(s_t, a_t) = \sum_{i=t}^{\infty} \gamma^i \cdot r_i - V_{\theta}(s_t) & \text{Baseline subtraction} \\ \Psi_t &= \hat{A}_n(s_t, a_t) &= \sum_{i=t}^{n-1} \gamma^i \cdot r_i + \gamma^n V_{\theta}(s_n) - V_{\theta}(s_t) & \text{Baseline + bootstrap} \end{split}$$

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{h_0 \sim p_{\theta}(h_0)} \Big[\sum_{t=0}^n \Psi_t \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \Big]$$

$$\begin{split} \Psi_t &= \hat{Q}_{MC}(s_t, a_t) = \sum_{i=t}^{\infty} \gamma^i \cdot r_i & \text{Monte Carlo target} \\ \Psi_t &= \hat{Q}_n(s_t, a_t) &= \sum_{i=t}^{n-1} \gamma^i \cdot r_i + \gamma^n V_{\theta}(s_n) & \text{bootstrap } (n\text{-step target}) \\ \Psi_t &= \hat{A}_{MC}(s_t, a_t) = \sum_{i=t}^{\infty} \gamma^i \cdot r_i - V_{\theta}(s_t) & \text{Baseline subtraction} \\ \Psi_t &= \hat{A}_n(s_t, a_t) &= \sum_{i=t}^{n-1} \gamma^i \cdot r_i + \gamma^n V_{\theta}(s_n) - V_{\theta}(s_t) & \text{Baseline + bootstrap} \\ \Psi_t &= Q_{\theta}(s_t, a_t) & \text{Q-value approximation} \end{split}$$

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{h_0 \sim p_{\theta}(h_0)} \Big[\sum_{t=0}^n \Psi_t \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \Big]$$

$$\begin{split} \Psi_t &= \hat{Q}_{MC}(s_t, a_t) = \sum_{i=t}^{\infty} \gamma^i \cdot r_i & \text{Monte Carlo target} \\ \Psi_t &= \hat{Q}_n(s_t, a_t) &= \sum_{i=t}^{n-1} \gamma^i \cdot r_i + \gamma^n V_{\theta}(s_n) & \text{bootstrap } (n\text{-step target}) \\ \Psi_t &= \hat{A}_{MC}(s_t, a_t) = \sum_{i=t}^{\infty} \gamma^i \cdot r_i - V_{\theta}(s_t) & \text{Baseline subtraction} \\ \Psi_t &= \hat{A}_n(s_t, a_t) &= \sum_{i=t}^{n-1} \gamma^i \cdot r_i + \gamma^n V_{\theta}(s_n) - V_{\theta}(s_t) & \text{Baseline + bootstrap} \\ \Psi_t &= Q_{\theta}(s_t, a_t) & \text{Q-value approximation} \end{split}$$

These principles apply to all reinforcement learning (also value-based)!

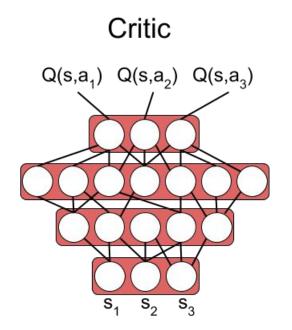
Actor-critic

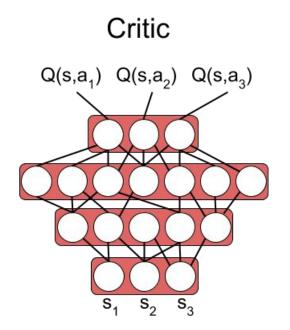
Use a value function to potentially get a better policy gradient update

1. <u>Within policy gradient theorem</u>:

- a. Bootstrapping lower variance in cumulative reward estimate
- b. Baseline subtraction lower variance in gradient estimate
- 2. <u>Other type of update</u>:
 - a. Deterministic policy gradient

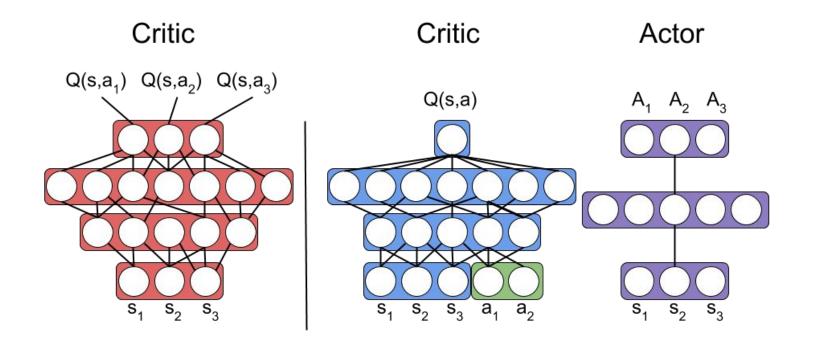
- Alternative policy gradient approach
- Only conceptually discussed (short)



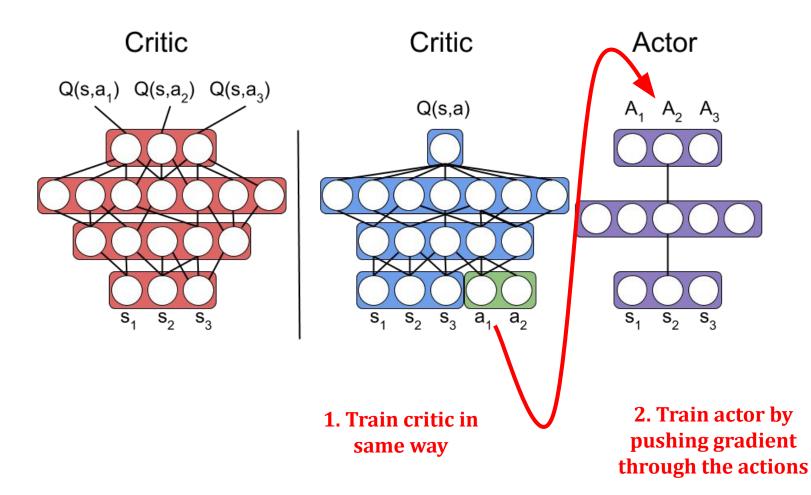


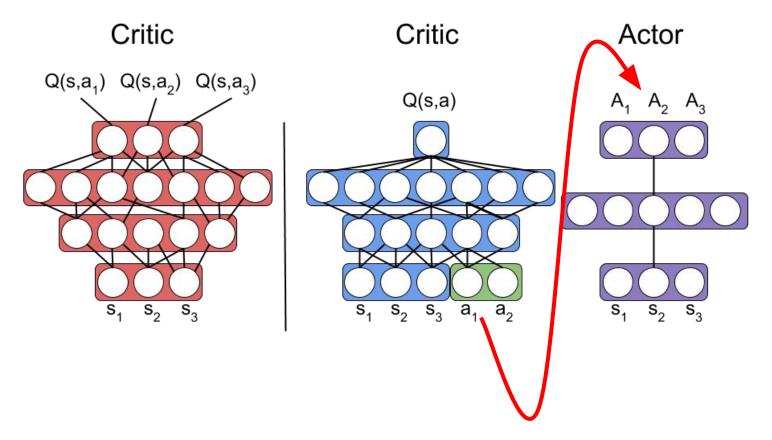
Value-based RL

E.g. deep Q-network (DQN)



^{1.} Train critic in same way





= Deterministic policy gradient
(only need to understand concept)

6. Gradient-free policy search

Gradient-free optimization

Can also do gradient-free optimization:

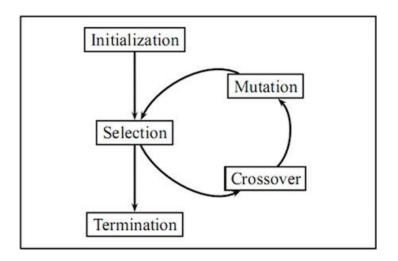
- Evolutionary strategies
- Cross-entropy method
- Simulated annealing

Gradient-free optimization

Can also do gradient-free optimization:

- Evolutionary strategies
- Cross-entropy method
- Simulated annealing

Population-based



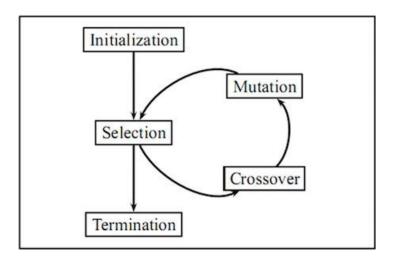
Gradient-free optimization

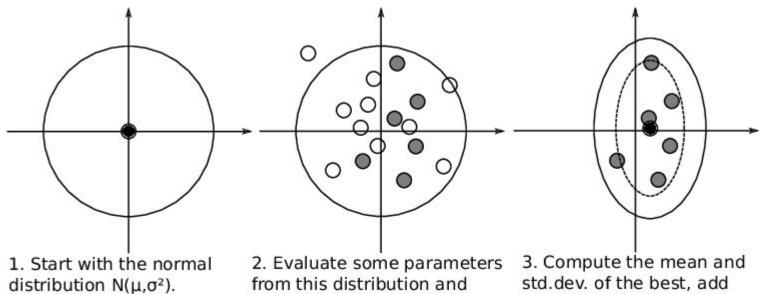
Can also do gradient-free optimization:

- Evolutionary strategies
- Cross-entropy method
- Simulated annealing

Population-based

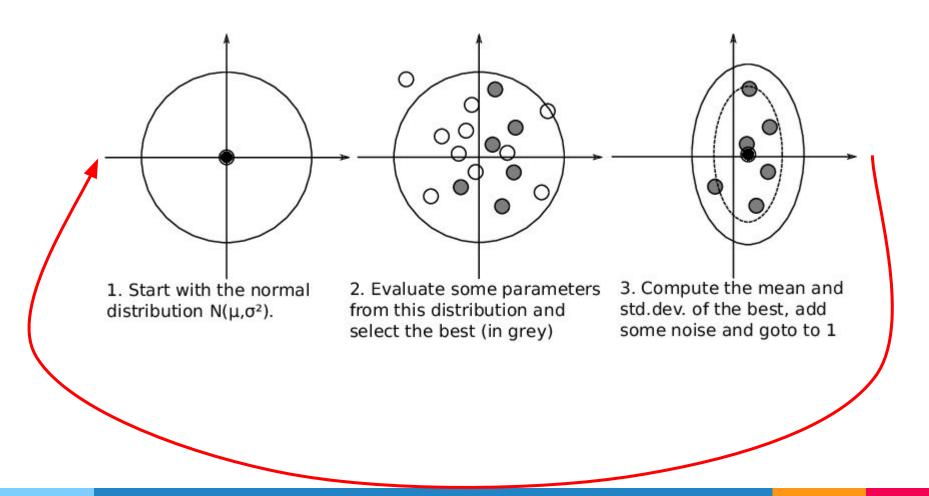
Received less attention in RL and ML compared to gradient-based optimization, but start to resurface!





select the best (in grey)

some noise and goto to 1



Very simple policy search method & often a strong baseline

Very simple policy search method & often a strong baseline

Algorithm 4: Cross-entropy method (CEM) for reinforcement learning

Input: A differentiable policy $\pi_{\theta}(a|s)$, parametrized by $\theta \in \mathbb{R}^d$, where $\theta \sim \mathcal{N}(\mu, \sigma)$. Number of iterations n_{iter} , number of samples n_{sample} , top percentage u. **Initialization**: Randomly initialize $\mu_1 \in \mathbb{R}^d$ and $\sigma_1 \in (\mathbb{R}^+)d$. **for** $i = 1..n_{iter}$ **do** Sample parameters $\theta_j \sim \mathcal{N}(\mu_i, \text{diag}(\sigma_i))$ for $j = 1..n_{\text{sample}}$ Sample returns $R_j \sim \pi_{\theta_j}(a|s)$ Select elite set of θ_j giving the top u% returns R_j $\mu_{i+1}, \sigma_{i+1} \leftarrow$ refit Gaussian on elite set **end** $\theta = \mu$ **Return** $\pi_{\theta}(a|s)$

Very simple policy search method & often a strong baseline

Algorithm 4: Cross-entropy method (CEM) for reinforcement learning

Input: A differentiable policy $\pi_{\theta}(a|s)$, parametrized by $\theta \in \mathbb{R}^d$, where $\theta \sim \mathcal{N}(\mu, \sigma)$. Number of iterations n_{iter} , number of samples n_{sample} , top percentage u. **Initialization**: Randomly initialize $\mu_1 \in \mathbb{R}^d$ and $\sigma_1 \in (\mathbb{R}^+)d$. **for** $i = 1..n_{iter}$ **do** Sample parameters $\theta_j \sim \mathcal{N}(\mu_i, \text{diag}(\sigma_i))$ for $j = 1..n_{\text{sample}}$ Sample returns $R_j \sim \pi_{\theta_j}(a|s)$ Select elite set of θ_j giving the top u% returns R_j $\mu_{i+1}, \sigma_{i+1} \leftarrow$ refit Gaussian on elite set **end** $\theta = \mu$ **Return** $\pi_{\theta}(a|s)$

Pseudo-code in lecture notes

Summary & Assignments

First half:

First half:

- Continuous RL is important for the real world!

First half:

- Continuous RL is important for the real world!
- It does not alter the MDP specification much.

First half:

- Continuous RL is important for the real world!
- It does not alter the MDP specification much.
- It does alter the way we should specify our solution, with focus on policy-based and actor critic approaches.

First half:

- Continuous RL is important for the real world!
- It does not alter the MDP specification much.
- It does alter the way we should specify our solution, with focus on policy-based and actor critic approaches.

Second half:

- Policy-based approaches can be gradient-based (policy gradients) or gradient-free.

First half:

- Continuous RL is important for the real world!
- It does not alter the MDP specification much.
- It does alter the way we should specify our solution, with focus on policy-based and actor critic approaches.

- Policy-based approaches can be gradient-based (policy gradients) or gradient-free.
- Gradient-based:
 - The cardinal policy gradient algorithm use the *policy-gradient theorem*.

First half:

- Continuous RL is important for the real world!
- It does not alter the MDP specification much.
- It does alter the way we should specify our solution, with focus on policy-based and actor critic approaches.

- Policy-based approaches can be gradient-based (policy gradients) or gradient-free.
- Gradient-based:
 - The cardinal policy gradient algorithm use the *policy-gradient theorem*.
 - This also has various actor-critic extensions.

First half:

- Continuous RL is important for the real world!
- It does not alter the MDP specification much.
- It does alter the way we should specify our solution, with focus on policy-based and actor critic approaches.

- Policy-based approaches can be gradient-based (policy gradients) or gradient-free.
- Gradient-based:
 - The cardinal policy gradient algorithm use the *policy-gradient theorem*.
 - This also has various actor-critic extensions.
 - An alternative policy gradient approach are *deterministic policy gradients*.

First half:

- Continuous RL is important for the real world!
- It does not alter the MDP specification much.
- It does alter the way we should specify our solution, with focus on policy-based and actor critic approaches.

- Policy-based approaches can be gradient-based (policy gradients) or gradient-free.
- Gradient-based:
 - The cardinal policy gradient algorithm use the *policy-gradient theorem*.
 - This also has various actor-critic extensions.
 - An alternative policy gradient approach are *deterministic policy gradients*.
- Gradient-free:
 - Cross-entropy method

To Do

- Read the Lecture Notes!
 - More mathematical notation, but you need to get familiar with this to understand, implement and describe algorithms.
 - Focus on the sections "Representation of Solution" and entire Part "Policy-based RL"

To Do

- Read the Lecture Notes!
 - More mathematical notation, but you need to get familiar with this to understand, implement and describe algorithms.
 - Focus on the sections "Representation of Solution" and entire Part "Policy-based RL"
- Make the assignment!
 - Most practical emphasis on vanilla policy gradient (REINFORCE)

To Do

- Read the Lecture Notes!
 - More mathematical notation, but you need to get familiar with this to understand, implement and describe algorithms.
 - Focus on the sections "Representation of Solution" and entire Part "Policy-based RL"
- Make the assignment!
 - Most practical emphasis on vanilla policy gradient (REINFORCE)

