
Assignment: Exploration/Exploitation on Bandits
Course: Reinforcement Learning, Leiden University

Written by: Thomas Moerland

In this assignment, you will study three different Bandit algorithms:

� ε-greedy (exploration parameter: epsilon)

� Optimistic initialization with greedy action selection (exploration parameter: initial_value)

� Upper confidence bounds (UCB) (exploration parameter: c)

Your research question Your goal is to investigate these three algorithms. In particular, you
will:

1. Implement these algorithms.

2. Investigate the effect of different exploration parameters for each algorithm.

3. Compare the performance of the three methods.

The bandit environment We will study these algorithms on a procedurally generated set of
bandits. Each bandit instance is initialized as follows:

� The bandit has 10 arms.

� The mean pay-off of each arm is randomly drawn from a uniform distribution: µa ∼
Uniform(0, 1).

� The reward we get at each pull of an arm is a 0/1 variable with mean µa, i.e., ra ∼
Bernouilli(µa).

First carefully read the preparation instructions, and good luck!

1



Preparation

Python You need to install Python 3, the packages Numpy, Matplotlib, and SciPy, and an
IDE of your choice.

Files You are provided with four Python files:

� BanditEnvironment.py: This file procedurally generates a Bandit instance. Inspect the
code and make sure you understand it. Run the file to sample from each action once, and
observe a reward.

� BanditPolicies.py: This file contains placeholder classes for the three Bandit algorithms
you will implement: EgreedyPolicy, OIPolicy, and UCBPolicy. Currently, each policy
randomly returns an action. Your goal is to implement the correct init(), select_action(),
and update() methods for each class. Run the file and verify that they work for random
action selection.

� BanditExperiment.py: In this file you will write your experiment code.

� Helper.py: This file contains some helper classes for plotting and smoothing. You can
choose to use them, but are of course free to write your own code for plotting and smoothing
as well. Inspect the code and run the file to verify that your understand what they do.

Handing in You need to hand in:

� A report (pdf) of maximum 6 pages!!. Be sure your report:

– Describes your methods (include equations).

– Shows results (figures).

– Interprets your results.

� All code to replicate your results. Your submission should contain:

– The original BanditEnvironment.py and Helper.py

– Your modified BanditPolicies.py.

– Your modified BanditSolution.py, which upon execution should produce all your
plots, and save these to the current folder.

Be sure to verify that your code runs from the command line, and does not give
errors!

Warning: common errors (with statistical experiments).

� Average your results over repetitions (since each runs is stochastic)!

� In each repetition, really start from scratch, i.e., randomly initialize a new Bandit environ-
ment, and initialize your policy from scratch.

� Do not fix any seeds within the loop over your repetitions! Each repetition should really
draw a new Bandit.

� Average your curves over repetitions. If necessary, apply additional smoothing to your
curves.
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1 ε-greedy

You first decide to study an ε-greedy exploration strategy for this problem. You proceed in four
steps:

a Correctly complete the class EgreedyPolicy() in the file BanditPolicies.py.

� Initialize the means Q(a) and counts n(a) for each action to 0.

� Implement the following ε-greedy policy:

πε−greedy(a) =

{
1− ε, if a = arg maxb∈AQ(b)

ε
(|A|−1) , otherwise

(1)

� Implement the following update (using an incremental update of the means):

n(a)← n(a) + 1 (2)

Q(a)← Q(a) +
1

n(a)

[
r(a)−Q(a)

]
(3)

Verify that your code works by running BanditPolicies.py.

b Write a function run_repetitions() in BanditExperiment.py. Your function should repeat-
edly test the policy EgreedyPolicy() on an instance of BanditEnvironment().

� Run a single Bandit experiment for n_timesteps=1000 steps (Algorithm 1).

� Run n_rep=500 repetitions of this experiment. Be sure to initialize a clean policy
and environment instance for each repetition (without fixing a seed)!

� Average the learning curves over your n_rep=500 experiments, smooth your curve with
smoothing_window=31, and plot the result.

Algorithm 1: Pseudocode for single Bandit experiment.

Input: Exploration parameter, maximum number of timesteps T .
Initialization: Initialize policy π(a)
for t = 1...T do

Sample next action: at ∼ π(a)
Sample reward from environment: rt ∼ p(R|at)
Update π based on observations (at, rt)

end

Experiment a bit with varying your hyperparameters: epsilon, n_timesteps, n_rep, and
smoothing_window. Get a feeling for how they affect your results.

c You decide to run a more structured experiment.

� You will test the following values for epsilon: [0.01,0.05,0.1,0.25].

� Run your function from 1b for these different values of epsilon, where you again average
over n_rep=500 repetitions of n_timesteps=1000 steps, and smooth your curve with
smoothing_window=31.
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� Plot the average performance for each setting of epsilon in a single graph. Add a legend,
and label the x and y-axis appropriately. You could use the LearningCurvePlot()

class for this.

d Write the first section of your report. Describe:

� Your methodology (with equations).

� Your results (graphs).

� Interpret the results, give possible explanations.
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2 Optimistic Initialization

You decide to try another bandit algorithm: optimistic initialization with greedy action selection.
You follow the same scheme as for your previous experiments.

a Correctly complete the methods of OIPolicy() in the file BanditPolicies.py.

� Initialize the estimates for the mean Q(a) of each arm to initial_value.

� Implement the greedy policy:

π(a) =

{
1, if a = arg maxb∈AQ(b)

0, otherwise
(4)

� For updating, we will this time try a learning-based update rule for the mean (useful for
non-stationary problems):

Q(a)← Q(a) + α
[
r −Q(a)

]
(5)

for learning rate α. We will fix α = 0.1 in these experiments.

Verify that your code works by running BanditPolicies.py.

b Test your OIPolicy() policy over repetitions, like in question 1b. You have two options:

� Write a completely new function (e.g., run_repetitions_oi()) in BanditExperiment.py.

� Modify your previous run_repetitions() to take an argument policy_type, to make
it work for either policy_type=‘egreedy’ or policy_type=‘oi’.

Again, be sure to initialize a clean policy and environment instance for each rep-
etition (without fixing a seed)! Verify that your code runs and produces reasonable curves,
and play around with a few settings of initial_value.

c Run a structured experiment like question 1c.

� Test different values for initial_value: [0.1,0.5,1.0,2.0].

� Again average over n_rep=500 repetitions of n_timesteps=1000 steps, and smooth your
curve with smoothing_window=31.

� Plot the average performance for each initial value in a single graph. Add a legend,
and label the x and y-axis appropriately. You could use the LearningCurvePlot()

class for this.

d Write a results section in our report with:

� Your methodology (with equations).

� Your results (graphs).

� Interpret the results, give possible explanations.
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3 Upper Confidence Bounds

You are getting warmed up now, and decide to repeat the procedure once more for the Upper
Confidence Bounds (UCB) algorithm, that incorporates uncertainty into its decision making.

a Correctly complete the methods of UCBPolicy() in the file BanditPolicies.py.

� Initialize a vector with means Q(a) and counts n(a) of 0 for each action.

� Implement the UCB policy:

π(a) =

{
1, if a = arg maxb∈A

[
Q(b) + c ·

√
ln t
n(b)

]
0, otherwise

(6)

where t is the timestep and c ∈ R+ is the exploration constant. Importantly, when
n(a) = 0, we treat the estimate for that action as infinity (untried actions are
always preferred over actions that have at least a single try).

� For updating, use the incremental learning rule of the first part again:

n(a)← n(a) + 1 (7)

Q(a)← Q(a) +
1

n(a)

[
r −Q(a)

]
(8)

b Verify that your code works by running BanditPolicies.py.

� Again test your policy over repetitions, either modifying the function run_repetitions()

for argument policy=’ucb’, or writing a new function.

Again, be sure to initialize a clean policy and environment instance for each rep-
etition (without fixing a seed)! Verify that your code runs, and that you get a reasonable
learning curve. Play around with a few different values of c, and observe the effect.

c Run a more structured experiment:

� Test values for c: [0.01,0.05,0.1,0.25,0.5,1.0].

� Again average over n_rep=500 repetitions of n_timesteps=1000 steps, and smooth your
curve with smoothing_window=31.

� Plot the average performance for each initial value in a single graph. Add a legend,
and label the x and y-axis appropriately. You could use the LearningCurvePlot()

class for this.

d Write a results section in our report with:

� Your methodology (with equations).

� Your results (graphs).

� Interpret the results, give possible explanations.
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4 Comparison

Finally, you decide to structurally compare your three approaches. You proceed in two steps:

a First, you compute the average reward over all runs for each of the above settings. In equations,
you compute the mean return r̄:

r̄ =
1

(N · T )

N∑
n=1

T∑
t=1

rt,n

where N is the number of repetitions, and T is the number of timesteps, for each of the
following settings :

� epsilon: [0.01,0.05,0.1,0.25].

� initial_value: [0.1,0.5,1.0,2.0].

� c: [0.01,0.05,0.1,0.25,0.5,1.0].

(You already have these results from the previous runs, and only need to compute the means.)
Then, you make a plot like Figure 2.6 from Sutton and Barto, where the horizontal axis plots
the exploration parameter value, and the vertical axis plots the associated mean reward over
the first 1000 steps. Use a logarithmic scale for the x-axis!. Add a legend, and labels
to your x and y-axis. You could use the ComparisonPlot() class for this.

b Based on your results from questions a, you pick the best setting for each method, i.e.,
epsilon_optimal, initial_value_optimal and c_optimal. Then, you plot the learning
curves of these three optimal cases in a single graph (you may use the LearningCurvePlot()

class). Add a legend that properly explains each line, and labels to your x and
y-axis.

c Write a results section in your report, where you:

� Describe your methods.

� Show both result graphs of a and b.

� Interpret the results, give possible explanations. Which of these algorithm do you prefer?
Why? How could the others be improved?
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