Assignment: Model-based reinforcement learning
Course: Reinforcement Learning, Leiden University
Written by: Thomas Moerland

Research Question
In this assignment, you will study two model-based reinforcement learning (MBRL) algorithms:
e Dyna (Sutton and Barto, Sec. 8.2) with e-greedy exploration.
e Prioritized sweeping (Sutton and Barto, Sec. 8.4) with e-greedy exploration.
Your goal is to investigate these two algorithms. In particular, you will:
1. Implement these algorithms.
2. For each algorithm investigate the effect of three hyperparameters:

e epsilon: the parameter that scales the amount of exploration.

e n_planning_iterations: the number of planning iterations each algorithm makes in
between a real environment step.

e learning_rate: the magnitude of each learning update step.

Environment

You will use the Windy Gridworld environment for your studies, as specified in Example 6.5
(page 130) of Sutton and Barto.
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The environment consists of a 10x7 grid, where at each cell we can move up, down, left or
right. We start at location (0,3) (we start indexing at 0, as is done in Python as well), indicated
in the figure by ‘S’. Our goal is to move to location (7,3), indicated by ‘G’. However, a special



feature of the environment is that there is a vertical wind. In columns 3, 4, 5 and 8, we are
pushed one additional step up, while in columns 6 and 7, we move up two additional steps.
The reward of the agent at each step is -1, while reaching the goal gives an reward of +20, and
terminates the episode.

Preparation

Python You need to install Python 3, the packages Numpy, Matplotlib, SciPy, and queue,
and an IDE of your choice.

Files You are provided with four Python files:

e MBRLEnvironment.py: This file generates the environment. Run the file to see a demon-
stration of the environment with randomly selected actions. Inspect the class methods
and make sure you understand them. With render() you can interactively visualize
the environment during execution. If you provide Q_sa (a Q-value table), the environ-
ment will also display the Q-value estimates for each action in each state, while toggling
plot_optimal_policy will also show arrows for the optimal policy.

e MBRLAgents.py: This file contains placeholder classes for your two MBRL algorithms:
DynaAgent, and PrioritizedSweepingAgent. Currently, each method randomly selects
and action, and does not perform any updates. Your goal is to implement the correct
init(), select_action(), and update () methods for each class. Run the file and verify
that they work for random action selection.

e MBRLExperiment.py: In this file you will write your experiment code.

e Helper.py: This file contains some helper classes for plotting and smoothing. You can
choose to use them, but are of course free to write your own code for plotting and smoothing
as well. Inspect the code and run the file to verify that your understand what they do.

Handing in You need to hand in:
e A report (pdf) of maximum 6 pages!!. Be sure your report:

— Describes your methods (include equations).
— Shows results (figures).

— Interprets your results.
e All code to replicate your results. Your submission should contain:

— The original MBRLEnvironment.py and Helper.py
— Your modified MBRLAgents. py.
— Your modified MBRLExperiment.py, which upon execution should produce all your

plots, and save these to the current folder.

Be sure to verify that your code runs from the command line, and does not give
errors!



Warning: common errors (with statistical experiments).

Average your results over repetitions (since each runs is stochastic)!

In each repetition, really start from scratch, i.e., randomly initialize a new environment,
and initialize your policy from scratch.

Do not fix any seeds within the loop over your repetitions! Each repetition should really
be an independent repetition.

Average your curves over repetitions. If necessary, apply additional smoothing to your
curves.



1 Dyna
You first decide to study the Dyna algorithm. You proceed in four steps:
a Correctly complete the class DynaAgent () in the file MBRLAgents.py.

e In init(), initialize the means Q(s,a), transition counts n(s,a,s’) and reward sums
Rsum(s,a,s") for each action to 0.

e In select_action(), implement the e-greedy policy.

e Most work needs to happen in the update () function. Full pseudocode is available in the
book, which is repeated below with more detail:

Algorithm 1: Dyna (with e-greedy exploration) pseudo-code.

Input: Exploration parameters ¢, number of planning updates K, learning rate «,
discount parameter «, maximum number of timesteps T’

Initialization: Initialize Q(s,a) =0, n(s,a,s’) =0, Rsum(s,a,8') =0 Vs e S,a € A.

for t =1...T do

s <— current state /* Reset when environment terminates */
a4 ~ Tegreedy(a]S) /* Sample action */
r, s ~p(r,s'ls,a) /* Simulate environment */
p(s’,r|s,a) + Update(s, a,r,s") /* Update model (Alg.2) */
Q(s,a) + Q(s,a) +a-[r+v -maxy Q(s',a') — Q(s,a)] /* Update Q-table */
repeat K times
s < random previously observed state /* Find state with n(s) >0 */
a < previously taken action in state s /* Find action with n(s,a) >0 */
s'r~p(s,rls,a) /* Simulate model */
Q(s,a) + Q(s,a) + a-[r+v -maxy Q(s',a’) — Q(s,a)] /* Update Q-table */
end
end

Algorithm 2: Update model p(s’, r|s, a), split up as a tabular dynamics model p(s’|s, a)
and deterministic reward function 7(s, a, s).

n(s,a,s’) < n(s,a,s") +1 /* Update transition counts */

Rsum(s,a,8") < Rsum(s,a,s") +r /* Update reward sums */
’

p(s']s,a) = % /* Estimate transition function */

7(s,a,s") = Reup(5,0,57) /* Estimate reward function */

n(s,a,s’)

Verify that your code works by running MBRLAgents.py. You can manually execute every step
by pressing ’Enter’, or complete the full run by pressing ’c’. Look at how the agents learns,
how the Q(s,a) value estimates change, and how the optimal policy changes. Is it easy for the
agent to learn?

b Write a function run_repetitions() in MBRLExperiment.py. Your function should repeatedly
test the DynaAgent () on an instance of WindyGridworld (). Switch plotting off for your
repetitions, plotting will slow the run down a lot.



e Run n_rep=10 repetitions, with n_timesteps=10000 steps for each repetition. Be sure
to initialize a clean policy and environment instance for each repetition (with-
out fixing a seed)!

e Average the learning curves over your n_rep=10 repetitions, smooth your curve with
smoothing_window=101, and plot the result.

Experiment a bit with varying your hyperparameters: epsilon, learning_rate and n_planning_updates.
Get a feeling for how they affect your results.

¢ You decide to run three more structured experiments:

e Test epsilon: [0.01,0.05,0.1,0.25], for learning_rate=0.5 and n_planning_updates=5.
e Test learning_rate: [0.1,0.5,1.0], for epsilon=0.05 and n_planning_updates=5.
e Test n_planning_updates: [1,5,15], for epsilon=0.05 and learning_rate=0.5.

Run your function from 1b for these different experiments, where you again average over
n_rep=10 repetitions of n_timesteps=10000 steps, and smooth your curve with smoothing_window=101.

Make a nice plot for each of the three experiment, where you compare the learning curves
for the different hyperparameter settings. Add a legend, and label the x and y-axis
appropriately. You could use the LearningCurvePlot () class for this.

d Write the first section of your report. Describe:
e Your methodology (with equations).

e Your results (graphs).

e Interpret the results, give possible explanations.



2 Prioritized sweeping

You decide to repeat the above procedure with a different idea, prioritized sweeping, which also
plans in the reverse direction to spread the information more quickly over the state space. You
should largely be able to reuse your code from the previous experiment.

a Correctly complete the class PrioritizedSweepingAgent () in the file MBRLAgents. py.
e In init(), initialize the means Q(s,a), transition counts n(s,a,s’) and reward sums
Rsum(s,a,s’) for each action to 0, and initialize an empty priority queue PQ.

e In select_action(), implement the e-greedy policy.

e Most work needs to happen in the update () function. Full pseudocode is available in the
book, which is repeated below with more detail:

Algorithm 3: Prioritized sweeping (with e-greedy exploration) pseudo-code.

Input: Exploration parameters €, number of planning updates K, learning rate «,

discount parameter v, maximum number of timesteps 7', priority threshold 6.
Initialization: Initialize Q(s,a) =0, n(s,a,s’) =0, Rsum(s,a,8') =0 Vs € S,a € A,
and prioritized queue PQ.

for t =1...T7 do
s <— current state /* Reset when environment terminates */
a4 ~ Tegreedy(a]S) /* Sample action */
r, s ~p(r,s'ls, a) /* Simulate environment */
p(s’,7|s,a) + Update(s,a,r,s) /* Update model (Alg.2) */
p < |r+v-maxy Q(s',a') — Q(s,a)] /* Compute priority p */
if p> 6 then
‘ Insert (s,a) into PQ with priority p /* State-action needs update */
end

/// Start sampling from P(Q to perform updates
repeat K times
s, a < pop highest priority from PQ /* Sample P(), break when empty */
s'yr~p(srls,a) /* Simulate model */
Q(s,a) «+ Q(s,a) +a-[r+v -maxy Q(s',a") — Q(s,a)] /* Update Q-table */
/// Loop over all state action that may lead to state s
for each (5,a) with n(5,a,s) > 0 do
7 =7(5a,s) /* Get reward from model */
p < |7+ v - max, Q(s,a) — Q(3,a)] /* Compute priority p */
if p> 6 then
‘ Insert (§,a) into PQ with priority p /* State-action needs update */
end

end
end

end

Verify that your code works by running MBRLAgents.py. Look at how the agents learns, how
the Q(s,a) value estimates change, and how the optimal policy changes. Is it easy for the
agent to learn?



Modify run_repetitions() to work for your PrioritizedSweepingAgent as well. Switch
plotting off for your repetitions, plotting will slow the run down a lot.

Run the same structured experiments as before:

e Test epsilon: [0.01,0.05,0.1,0.25], for learning_rate=0.5 and n_planning_updates=5.
e Test learning_rate: [0.1,0.5,1.0], for epsilon=0.05 and n_planning_updates=5.
e Test n_planning_updates: [1,5,15], for epsilon=0.05 and learning_rate=0.5.

Run your run_repetitions() for each of these experiments, where you again average over
n_rep=10 repetitions of n_timesteps=10000 steps, and smooth your curve with smoothing_window=101.

Make a nice plot for each of the three experiment, where you compare the learning curves
for the different hyperparameter settings. Add a legend, and label the x and y-axis
appropriately. You could use the LearningCurvePlot () class for this.

Write a second section of your report. Describe:
¢ Your methodology (with equations).

e Your results (graphs).

e Interpret the results, give possible explanations.



3 Reflection

Write a short reflection on both algorithms:

e What could be a strength and weakness of model-based RL compared to model-free RL
(like Q-learning)?

e How do you compare Dyna and Prioritized Sweeping? Which approach performed better
(you may add a plot where you compare the best performing models)? Which idea do you
like better? Could both be combined?

e All our model-based reinforcement learning experiments did not vary action selection: we
always used e-greedy exploration. Do you think e-greedy is a smart exploration approach?
Could you think of other approaches? Could you think of an exploration method that
would also use the dynamics models you learned in this assignment?



