## **Model-based Reinforcement Learning**

Course: Reinforcement Learning, Bachelor AI, Leiden University

Lecturer: Thomas Moerland

#### Content

I: Integrated view of planning and learning

-----

II: Combination of planning and learning

### Content

#### I: Integrated view of planning and learning

- 1. Access to the MDP dynamics
- 2. Planning versus learning
- 3. Types of back-ups

II: Combination of planning and learning

#### Content

#### I: Integrated view of planning and learning

- 1. Access to the MDP dynamics
- 2. Planning versus learning
- 3. Types of back-ups

#### II: Combination of planning and learning

- 4. Model-based reinforcement learning (MBRL)
- 5. Learning a model
- 6. Model-based RL algorithms

**Dynamics function**: p(s'|s,a)

Which next state s can we observe after taking action a in state s

**Dynamics function**: p(s'|s,a)

Which next state s can we observe after taking action a in state s

Two important considerations:

1) Is our access *reversible* or *irreversible*?

## Access to the environment dynamics

- <u>Reversible access</u>
  - We can take try any action in any state we want
  - Similar to planning in our head
  - Call such access a **model**



## Access to the environment dynamics

- <u>Reversible access</u>
  - We can take try any action in any state we want
  - Similar to planning in our head
  - Call such access a **model**



- <u>Irreversible access</u>
  - When we take an action, we have to continue from the next state
  - Similar to the real world
  - Call such access an **environment**



**Dynamics function**: p(s'|s,a)

Which next state s can we observe after taking action a in state s

Two important considerations:

1) Is our access *reversible* or *irreversible*? (model versus environment)

#### **Dynamics function**: p(s'|s,a)

Which next state s can we observe after taking action a in state s

Two important considerations:

- 1) Is our access *reversible* or *irreversible*? (model versus environment)
- 2) Do we get the *full distribution* of p(s'|s,a), or a *sample*?

**Dynamics function**: p(s'|s,a)

Which next state s can we observe after taking action a in state s

Two important considerations:

- 1) Is our access *reversible* or *irreversible*? (model versus environment)
- 2) Do we get the *full distribution* of p(s'|s,a), or a *sample*?

$$p(s'=1) = 0.1$$
  $s' = 3!$  (this time)  
 $p(s'=2) = 0.2$   
 $p(s'=3) = 0.7$ 

**Dynamics function**: p(s'|s,a)

Which next state s can we observe after taking action a in state s

Two important considerations:

- 1) Is our access *reversible* or *irreversible*? (model versus environment)
- 2) Do we get the *full distribution* of p(s'|s,a), or a *sample*?

$$p(s'=1) = 0.1$$
  $s' = 3!$  (this time)  
 $p(s'=2) = 0.2$   
 $p(s'=3) = 0.7$ 

#### Next page: 2-by-2 overview of these considerations

















## Summary 1: Access to MDP dynamics

1. Reversible versus irreversible access

2. Distributional versus sample models

#### 2) Difference between planning and learning

Planning

**Reinforcement learning** 

Planning

**Reinforcement learning** 





Planning

#### **Reinforcement learning**









Planning

#### **Reinforcement learning**



1/3

(0/1

1/1

(2/3)

(0/1)

( 0/1



Both can solve the same MDP optimization problem





So what discriminates planning from reinforcement learning?

So what discriminates planning from reinforcement learning?

Two factors:

| 1) | Access to the MDP dynamics: | reversible | or | irreversible |
|----|-----------------------------|------------|----|--------------|
| 2) | Storage of the solution:    | local      | or | global       |

So what discriminates planning from reinforcement learning?

Two factors:

| 1) | Access to the MDP dynamics: | reversible | or | irreversible |
|----|-----------------------------|------------|----|--------------|
| 2) | Storage of the solution:    | local      | or | global       |

## Local versus global solution

Question: can you guess what the difference between a local and global solution might be?

# Local versus global solution

- A **local** solution temporarily stores a solution for a subset of all states
  - focus on current state
  - discarded after execution
  - e.g., a planning tree





# Local versus global solution

- A **local** solution temporarily stores a solution for a subset of all states
  - focus on current state
  - discarded after execution
  - e.g., a planning tree

- A **global** solution permanently stores estimates for all states
  - e.g., a value table
  - only option in (model-free) RL, because we have to move forward and do not know when we get back to a state







Problem: we have two possible distinctions

Problem: we have two possible distinctions

|                                   | <u>Local solution</u> | <u>Global solution</u> |
|-----------------------------------|-----------------------|------------------------|
| <u>Reversible MDP</u><br>access   |                       |                        |
| <u>Irreversible</u><br>MDP access |                       |                        |

Problem: we have two possible distinctions

|                                        | Local solution                | <u>Global solution</u> |
|----------------------------------------|-------------------------------|------------------------|
| <u>Reversible MDP</u><br><u>access</u> | <b>Planning</b><br>e.g., MCTS |                        |
| <u>Irreversible</u><br>MDP access      |                               |                        |
Problem: we have two possible distinctions

|                                        | <u>Local solution</u>         | <u>Global solution</u>                   |
|----------------------------------------|-------------------------------|------------------------------------------|
| <u>Reversible MDP</u><br><u>access</u> | <b>Planning</b><br>e.g., MCTS |                                          |
| <u>Irreversible</u><br>MDP access      |                               | <b>Model-free RL</b><br>e.g., Q-learning |

Problem: we have two possible distinctions

|                                        | <u>Local solution</u>         | <u>Global solution</u>                                        |
|----------------------------------------|-------------------------------|---------------------------------------------------------------|
| <u>Reversible MDP</u><br><u>access</u> | <b>Planning</b><br>e.g., MCTS | <b>Borderline/Model-based RL</b><br>e.g., Dynamic Programming |
| <u>Irreversible</u><br>MDP access      |                               | <b>Model-free RL</b><br>e.g., Q-learning                      |

Problem: we have two possible distinctions

|                                   | <u>Local solution</u>         | <u>Global solution</u>                                        |
|-----------------------------------|-------------------------------|---------------------------------------------------------------|
| <u>Reversible MDP</u><br>access   | <b>Planning</b><br>e.g., MCTS | <b>Borderline/Model-based RL</b><br>e.g., Dynamic Programming |
| <u>Irreversible</u><br>MDP access | (impossible)                  | <b>Model-free RL</b><br>e.g., Q-learning                      |

Q: Why is it impossible to use a local solution when we have irreversible access?

Problem: we have two possible distinctions

|                                   | <u>Local solution</u>         | <u>Global solution</u>                                        |
|-----------------------------------|-------------------------------|---------------------------------------------------------------|
| <u>Reversible MDP</u><br>access   | <b>Planning</b><br>e.g., MCTS | <b>Borderline/Model-based RL</b><br>e.g., Dynamic Programming |
| <u>Irreversible</u><br>MDP access | (impossible)                  | <b>Model-free RL</b><br>e.g., Q-learning                      |

Q: Why is it impossible to use a local solution when we have irreversible access? A: Local solutions get discarded after execution of the real action, but if the environment is irreversible, we directly throw away our new solution after the first sample.

# Summary 2: Planning versus learning

- 1. Planning:reversible model +local solution
- 2. Model-free RL: irreversible model + global solution
- 3. Borderline/model-based RL: reversible model + global solution

3) Comparison of back-ups

### Expected versus sample back-ups

Our access to the MDP dynamics also influences the way we can back-up information!

# Expected versus sample back-ups

Our access to the MDP dynamics also influences the way we can back-up information!

Need to distinguish:

- **Expected** back-ups (mostly planning)
- **Sample** back-ups (mostly RL)

# Expected versus sample back-ups

Our access to the MDP dynamics also influences the way we can back-up information!

Need to distinguish:

- **Expected** back-ups (mostly planning)
- **Sample** back-ups (mostly RL)

We will illustrate this difference with back-up diagrams

A back-up diagram graphically represents a one-step back-up equation

A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Bellman equation



A back-up diagram graphically represents a one-step back-up equation



A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Bellman equation



To compute a new estimate of V(s)

A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Bellman equation



We sum over all actions

A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Bellman equation



A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Bellman equation



A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Bellman equation

= **full expectation** over the actions (policy) and next states (dynamics)



policy evaluation

A back-up diagram graphically represents a one-step back-up equation



A back-up diagram graphically represents a one-step back-up equation



A back-up diagram graphically represents a one-step back-up equation



A back-up diagram graphically represents a one-step back-up equation



A back-up diagram graphically represents a one-step back-up equation



A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the <u>Temporal Difference Learning</u>

This is a **sample** back-up over the actions (policy) and next states (dynamics)



A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the <u>Temporal Difference Learning</u>

This is a **sample** back-up over the actions (policy) and next states (dynamics)



Sample estimates will converge to the correct equation over multiple updates/samples









#### State-action values Q(s,a)

#### **Q:** Categorize Q-learning.

# Spectrum of possible 1-step back-ups



#### State-action values Q(s,a)



#### State-action values Q(s,a)



Advice: carefully study these 1-step back-up diagrams, they provide a lot of insight/overview

Can also extend the back-up over multiple-steps
















Back-up diagrams can provide much intuition about the space of possible back-ups

Back-up diagrams can provide much intuition about the space of possible back-ups

#### **Essentially four considerations**:

- 1) The width over the actions: sample (shallow) or expected (broad)
- 2) The back-up policy: on-policy or off-policy
- 3) The width over the dynamics: sample (shallow) or expected (broad)
- 4) The depth of the back-up: 1-step (shallow) or full depth (deep)

Back-up diagrams can provide much intuition about the space of possible back-ups

#### Essentially four considerations:

- 1) The width over the actions: sample (shallow) or expected (broad)
- 2) The back-up policy: on-policy or off-policy
- 3) The width over the dynamics: sample (shallow) or expected (broad)
- 4) The depth of the back-up: 1-step (shallow) or full depth (deep)



#### Question: can you indicate each decision for plain SARSA?

Back-up diagrams can provide much intuition about the space of possible back-ups

#### Essentially four considerations:

- 1) The width over the actions: **sample** (shallow) or expected (broad)
- 2) The back-up policy: **on-policy** or off-policy
- 3) The width over the dynamics: **sample** (shallow) or expected (broad)
- 4) The depth of the back-up: **1-step** (shallow) or full depth (deep)



#### Question: can you indicate each decision for plain SARSA?

#### Break

Interaction with the real world is typically irreversible.

Q: How could we still obtain a model of how the world works?

When the environment is irreversible, maybe we can still

learn a reversible model from data



Inspired by the way humans acquire (reversible) dynamics models:

we learn them from real-world (irreversible) experience











Two important steps:

1. How to learn a model from data? (Sec. 5)

2. How to integrate planning updates and learning updates? (Sec. 6)

## 5) Learning a model

## Learning a model

Main question:

Given a dataset of observed transitions (s,a,r,s'), how can we estimate

1) the dynamics p(s'|s,a) and

2) The reward r(s,a,s') function?

## Learning a model

Main question:

Given a dataset of observed transitions (s,a,r,s'), how can we estimate

#### 1) the dynamics p(s'|s,a) and

2) The reward r(s,a,s') function?

- 1. Track counts **n(s,a,s')** 
  - a. Number of times we observed s' after taking a in s.

- 1. Track counts **n(s,a,s')** 
  - a. Number of times we observed s' after taking a in s.
  - b. Can estimate from transition data (s,a,r,s')

- 1. Track counts **n(s,a,s')** 
  - a. Number of times we observed s' after taking a in s.
  - b. Can estimate from transition data (s,a,r,s')
  - c. Array of size  $|S| \ge |A| \ge |S|$

- 1. Track counts **n(s,a,s')** 
  - a. Number of times we observed s' after taking a in s.
  - b. Can estimate from transition data (s,a,r,s')
  - c. Array of size  $|S| \ge |A| \ge |S|$
- 2. Estimate p(s'|s,a) by normalizing the observed counts:

$$\hat{p}(s'|s,a) = \frac{n(s,a,s')}{n(s,a)}$$

- 1. Track counts **n(s,a,s')** 
  - a. Number of times we observed s' after taking a in s.
  - b. Can estimate from transition data (s,a,r,s')
  - c. Array of size  $|S| \times |A| \times |S|$
- 2. Estimate p(s'|s,a) by normalizing the observed counts:



- 1. Track counts **n(s,a,s')** 
  - a. Number of times we observed s' after taking a in s.
  - b. Can estimate from transition data (s,a,r,s')
  - c. Array of size  $|S| \times |A| \times |S|$
- 2. Estimate p(s'|s,a) by normalizing the observed counts:



Total number of trials at s,a

#### Example:

After taking a=1 in s=1, we have stored the following counts:

- n(s=1,a=1,s'=1) = 4
- n(s=1,a=1,s'=2) = 2
- n(s=1,a=1,s'=3) = 6

Example:

After taking a=1 in s=1, we have stored the following counts:

- n(s=1,a=1,s'=1) = 4
- n(s=1,a=1,s'=2) = 2
- n(s=1,a=1,s'=3) = 6

**Q**: Compute 
$$p(s'|s=1,a=1)$$

$$\hat{p}(s'|s,a) = \frac{n(s,a,s')}{n(s,a)}$$

Example:

After taking a=1 in s=1, we have stored the following counts:

- n(s=1,a=1,s'=1) = 4
- n(s=1,a=1,s'=2) = 2
- n(s=1,a=1,s'=3) = 6

**Q**: Compute 
$$p(s'|s=1,a=1)$$

$$\hat{p}(s'|s,a) = \frac{n(s,a,s')}{n(s,a)}$$

**A**:

- $p(s'=1|s=1,a=1) = 4/12 = \frac{1}{3}$
- $p(s'=2|s=1,a=1) = 2/12 = \frac{1}{6}$
- $p(s'=3|s=1,a=1) = 6/12 = \frac{1}{2}$

## Learning a model

Main question:

Given a dataset of observed transitions (s,a,r,s'), how can we estimate

- 1) the dynamics p(s'|s,a) and
- 2) the reward r(s,a,s') function?

- 1.
- Also track total transition rewards **R**<sub>sum</sub>(**s**,**a**,**s**') a. Sum of all observed rewards when reaching s' after taking a in s.

- 1. Also track total transition rewards **R**<sub>sum</sub>(s,a,s')
  - a. Sum of all observed rewards when reaching s' after taking a in s.
  - b. Can estimate from transition data (s,a,r,s')
  - c. Array of size  $|S| \ge |A| \ge |S|$

- 1. Also track total transition rewards **R**<sub>sum</sub>(**s**,**a**,**s**')
  - a. Sum of all observed rewards when reaching s' after taking a in s.
  - b. Can estimate from transition data (s,a,r,s')
  - c. Array of size  $|S| \times |A| \times |S|$
- 2. Estimate r(s,a,s') by computing the average transition reward:

$$\hat{r}(s, a, s') = \frac{R_{\text{sum}}(s, a, s')}{n(s, a, s')}$$

- 1. Also track total transition rewards **R**<sub>sum</sub>(s,a,s')
  - a. Sum of all observed rewards when reaching s' after taking a in s.
  - b. Can estimate from transition data (s,a,r,s')
  - c. Array of size  $|S| \times |A| \times |S|$
- 2. Estimate r(s,a,s') by computing the average transition reward:


#### Model estimation pseudocode

Full pseudocode in the lecture notes

#### Model estimation pseudocode

Full pseudocode in the lecture notes

Algorithm 1: Tabular model update pseudo-code. PS = prioritized sweeping.

**Input:** Maximum number of timesteps T. **Initialization**: Initialize n(s, a, s') = 0 and  $R_{sum}(s, a, s') = 0$   $\forall s \in S, a \in A$ **repeat** T **times** 

Observe 
$$\langle s, a, r, s' \rangle$$
  
 $n(s, a, s') \leftarrow n(s, a, s') + 1$   
 $R_{sum}(s, a, s') \leftarrow R_{sum}(s, a, s') + r$   
 $\hat{p}(s'|s, a) = \frac{n(s, a, s')}{\sum_{s'} n(s, a, s')}$   
 $\hat{r}(s, a, s') = \frac{R_{sum}(s, a, s')}{n(s, a, s')}$   
 $\hat{p}(s, a|s') = \frac{n(s, a, s')}{\sum_{s, a} n(s, a, s')}$ 

/\* Observe new transition \*/
/\* Update transition counts \*/
 /\* Update reward sums \*/
/\* Estimate transition function \*/
 /\* Estimate reward function \*/
 /\* Reverse model (only for PS) \*/

end

Estimate tabular p(s'|s,a) and r(s,a,s') from observed data tuples <s,a,r,s'>

Estimate tabular p(s'|s,a) and r(s,a,s') from observed data tuples <s,a,r,s'>

1. Maintain counts n(s,a,s') and total rewards R<sub>sum</sub>(s,a,s').

Estimate tabular p(s'|s,a) and r(s,a,s') from observed data tuples <s,a,r,s'>

- 1. Maintain counts n(s,a,s') and total rewards R<sub>sum</sub>(s,a,s').
- 2. Compute transition model p(s'|s,a) from normalizing counts.

Estimate tabular p(s'|s,a) and r(s,a,s') from observed data tuples <s,a,r,s'>

- 1. Maintain counts n(s,a,s') and total rewards R<sub>sum</sub>(s,a,s').
- 2. Compute transition model p(s'|s,a) from normalizing counts.
- 3. Compute reward model r(s,a,s') from averaging total rewards.

Estimate tabular p(s'|s,a) and r(s,a,s') from observed data tuples <s,a,r,s'>

- 1. Maintain counts n(s,a,s') and total rewards R<sub>sum</sub>(s,a,s').
- 2. Compute transition model p(s'|s,a) from normalizing counts.
- 3. Compute reward model r(s,a,s') from averaging total rewards.

Next section: how may this model be useful?

We want to make use of the learned model!

(combine planning and learning)

Discuss three algorithms:

- a) Real-time Dynamic Programming (RTDP)
- b) Dyna
- c) Prioritized sweeping

Discuss three algorithms:

- a) Real-time Dynamic Programming (RTDP)
- b) Dyna
- c) Prioritized sweeping

We already discussed **Dynamic Programming** (DP) in an earlier lecture

We already discussed <u>Dynamic Programming</u> (DP) in an earlier lecture

- Classic bridging algorithm between planning and learning
- Sweep through the entire state space
- At each state update with Bellman optimality equation
- Guaranteed convergence

We already discussed Dynamic Programming (DP) in an earlier lecture

- Classic bridging algorithm between planning and learning
- Sweep through the entire state space
- At each state update with Bellman optimality equation
- Guaranteed convergence

Main problem = <u>curse of dimensionality</u>









Solution of **real-time DP**: apply DP updates on traces sampled from the start

(All model-free RL approaches do this by definition, since the access to the MDP is then irreversible)







Discuss three algorithms:

- a) Real-time Dynamic Programming (RTDP)
- b) Dyna
- c) Prioritized sweeping

Main idea:

Learn a model to generate additional transition data,

apply standard update to these simulated transitions.









learn model





learn model

Algorithm 2: Dyna Q-learning with  $\epsilon$ -greedy exploration.

Input: Number of planning updates K, exploration parameter  $\epsilon \in (0, 1]$ , learning rate  $\alpha \in (0, 1]$ , discount parameter  $\gamma \in [0, 1]$ , maximum number of timesteps T. Initialization: Initialize  $\hat{Q}(s, a) = 0$ , n(s, a, s') = 0,  $R_{sum}(s, a, s') = 0$   $\forall s \in S, a \in A$ . for t = 1...T do  $s \leftarrow \text{current state}$  /\* Reset when environment terminates \*/  $a \sim \pi_{\epsilon\text{-greedy}}(a|s)$  /\* Sample action \*/  $r, s' \sim p(r, s'|s, a)$  /\* Simulate environment \*/  $\hat{Q}(s, a) \leftarrow \hat{Q}(s, a) + \alpha \cdot [r + \gamma \cdot \max_{a'} \hat{Q}(s', a') - \hat{Q}(s, a)]$  /\* Update Q-table \*/ end

Algorithm 2: Dyna Q-learning with  $\epsilon$ -greedy exploration.

**Input:** Number of planning updates K, exploration parameter  $\epsilon \in (0, 1]$ , learning rate  $\alpha \in (0, 1]$ , discount parameter  $\gamma \in [0, 1]$ , maximum number of timesteps T. **Initialization**: Initialize  $\hat{Q}(s, a) = 0$ , n(s, a, s') = 0,  $R_{sum}(s, a, s') = 0$   $\forall s \in \mathcal{S}, a \in \mathcal{A}$ . for t = 1...T do /\* Reset when environment terminates \*/  $s \leftarrow \text{current state}$  $a \sim \pi_{\epsilon\text{-greedy}}(a|s)$ /\* Sample action \*/  $r, s' \sim p(r, s'|s, a)$ /\* Simulate environment \*/ /\* Update model (Alg.1) \*/  $\hat{p}(s', r | s, a) \leftarrow \text{Update}(s, a, r, s')$ Learn model  $\hat{Q}(s,a) \leftarrow \hat{Q}(s,a) + \alpha \cdot [r + \gamma \cdot \max_{a'} \hat{Q}(s',a') - \hat{Q}(s,a)]$  /\* Update Q-table \*/ repeat K times Make k /\* State to plan on \*/  $s \leftarrow$  random previously observed state planning /\* Planning action \*/  $a \leftarrow$  previously taken action in state s  $\begin{array}{ll} s',r \sim \hat{p}(s',r|s,a) & /* \text{ Simulate model }*/\\ \hat{Q}(s,a) \leftarrow \hat{Q}(s,a) + \alpha \cdot [r + \gamma \cdot \max_{a'} \hat{Q}(s',a') - \hat{Q}(s,a)] & /* \text{ Update Q-table }*/ \end{array}$ updates in between every real end  $\mathbf{end}$ step

Algorithm 2: Dyna Q-learning with  $\epsilon$ -greedy exploration.

#### Algorithm you will implement in the assignment!



#### WITHOUT PLANNING (n=0)

|   |  |  |  | G |
|---|--|--|--|---|
|   |  |  |  | 1 |
| S |  |  |  |   |
|   |  |  |  |   |
|   |  |  |  |   |
|   |  |  |  |   |

#### WITH PLANNING (n=50)



Discuss three algorithms:

- a) Real-time Dynamic Programming (RTDP)
- b) Dyna
- c) Prioritized sweeping
If the value estimate of a state changes a lot,

then the states that precede it should probably also be updated.

If the value estimate of a state changes a lot,

then the states that precede it should probably also be updated.

Main idea:

Use a backward/reverse model to identify states that likely need updating (backwards search to spread information faster)







# Prioritized sweeping Multistep updates will propagate further along the trace





Main idea: *prioritize* states that deserve an update & additional backward search

Main idea: *prioritize* states that deserve an update & additional backward search

- Maintain priority queue, with priority as the <u>absolute TD error</u>

$$\mathbf{p} \leftarrow |r + \gamma \cdot \max_{a'} \hat{Q}(s', a') - \hat{Q}(s, a)|$$

$$\overset{\text{New Q-learning}}{\underset{\text{estimate}}{}}$$
Current estimate

#### Pseudocode in assignment/lecture notes

| <b>Algorithm 3:</b> Prioritized sweeping (Q-learning with $\epsilon$ -greedy exploration).                                                                                                                  |                                            |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--|--|
| <b>Input:</b> Number of planning updates $K$ , exploration parameter $\epsilon \in (0, 1]$ , learning rate $\alpha \in (0, 1]$ , discount parameter $\gamma \in [0, 1]$ , maximum number of timesteps $T$ , |                                            |  |  |
| priority threshold $\theta$ .                                                                                                                                                                               |                                            |  |  |
| Initialization: Initialize $Q(s, a) = 0$ , $n(s, a, s) = 0$ , $R_{sum}(s, a, s) = 0$ , $\forall s \in S, a \in A$ ,<br>and prioritized queue PO                                                             |                                            |  |  |
| for $t = 1$ . T do                                                                                                                                                                                          |                                            |  |  |
| $s \leftarrow \text{current state}$ /* Reset                                                                                                                                                                | when environment terminates */             |  |  |
| $a \sim \pi_{\epsilon \text{-greedy}}(a s)$                                                                                                                                                                 | /* Sample action */                        |  |  |
| $r, s' \sim p(r, s' s, a)$                                                                                                                                                                                  | /* Simulate environment */                 |  |  |
| $\hat{p}(s', r s, a) \leftarrow \text{Update}(s, a, r, s')$                                                                                                                                                 | /* Update model (Alg.1) */                 |  |  |
| $\mathbf{p} \leftarrow  r + \gamma \cdot \max_{a'} \hat{Q}(s', a') - \hat{Q}(s, a) $                                                                                                                        | /* Compute priority $\mathbf{p}$ */        |  |  |
| $\mathbf{if} \ \mathbf{p} > \theta \ \mathbf{then}$                                                                                                                                                         |                                            |  |  |
| Insert $(s, a)$ into PQ with priority <b>p</b> /                                                                                                                                                            | <pre>/* State-action needs update */</pre> |  |  |
| end                                                                                                                                                                                                         |                                            |  |  |
| /// Start sampling from PQ to perform updates                                                                                                                                                               |                                            |  |  |
| repeat $K$ times                                                                                                                                                                                            |                                            |  |  |
| $s, a \leftarrow \text{pop highest priority from PQ}$ /* S                                                                                                                                                  | Sample $PQ$ , break when empty */          |  |  |
| $s', r \sim \hat{p}(s', r s, a)$                                                                                                                                                                            | /* Simulate model */                       |  |  |
| $\hat{Q}(s,a) \leftarrow \hat{Q}(s,a) + \alpha \cdot [r + \gamma \cdot \max_{a'} \hat{Q}(s',a') - \hat{Q}(s,a)]$ /* Update Q-table */                                                                       |                                            |  |  |
| /// Loop over all state action that may lead to state s                                                                                                                                                     |                                            |  |  |
| for all $(\bar{s}, \bar{a})$ with $\hat{p}(\bar{s}, \bar{a} s) > 0$ do                                                                                                                                      |                                            |  |  |
| $ar{r}=\hat{r}(ar{s},ar{a},s)$                                                                                                                                                                              | <pre>/* Get reward from model */</pre>     |  |  |
| $\mathbf{p} \leftarrow  \bar{r} + \gamma \cdot \max_a \hat{Q}(s, a) - \hat{Q}(\bar{s}, \bar{a}) $<br>if $\mathbf{p} > \theta$ then                                                                          | /* Compute priority $\mathbf{p}$ */        |  |  |
| Insert $(s, a)$ into PQ with priority <b>p</b> / end                                                                                                                                                        | <pre>/* State-action needs update */</pre> |  |  |
| end                                                                                                                                                                                                         |                                            |  |  |
| end                                                                                                                                                                                                         |                                            |  |  |
| end                                                                                                                                                                                                         |                                            |  |  |

| <b>Algorithm 3:</b> Prioritized sweeping (Q-learning with $\epsilon$ -greedy exploration).                                                      |                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| <b>Input:</b> Number of planning updates K, exploration parameter $\epsilon \in (0, 1]$ , learning rate                                         |                    |
| $\alpha \in (0, 1]$ , discount parameter $\gamma \in [0, 1]$ , maximum number of timesteps T,                                                   |                    |
| priority threshold $\hat{\theta}$ .                                                                                                             |                    |
| <b>Initialization</b> : Initialize $Q(s, a) = 0$ , $n(s, a, s') = 0$ , $R_{sum}(s, a, s') = 0$ $\forall s \in \mathcal{S}, a \in \mathcal{A}$ , | — Maintain a quaua |
| and prioritized queue PQ.                                                                                                                       | Maintain a queue   |
| for $t = 1T$ do                                                                                                                                 |                    |
| $s \leftarrow \text{current state}$ /* Reset when environment terminates */                                                                     |                    |
| $a \sim \pi_{\epsilon\text{-greedy}}(a s)$ /* Sample action */                                                                                  |                    |
| $r, s' \sim p(r, s'   s, a)$ /* Simulate environment */                                                                                         |                    |
| $p(s', r s, a) \leftarrow \text{Update}(s, a, r, s')$ /* Update model (Alg.1) */                                                                |                    |
| $\mathbf{p} \leftarrow  r + \gamma \cdot \max_{a'} Q(s', a') - Q(s, a) $ /* Compute priority $\mathbf{p}$ */                                    |                    |
|                                                                                                                                                 |                    |
| Insert $(s, a)$ into PQ with priority <b>p</b> /* State-action needs update */                                                                  |                    |
| end                                                                                                                                             |                    |
| /// Start sampling from PQ to perform updates                                                                                                   |                    |
| repeat K times                                                                                                                                  |                    |
| $s, a \leftarrow \text{pop highest priority from PQ}$ /* Sample PQ, break when empty */                                                         |                    |
| $s', r \sim \hat{p}(s', r s, a)$ /* Simulate model */                                                                                           |                    |
| $Q(s,a) \leftarrow Q(s,a) + \alpha \cdot [r + \gamma \cdot \max_{a'} Q(s',a') - Q(s,a)]$ /* Update Q-table */                                   |                    |
| /// Loop over all state action that may lead to state $s$                                                                                       |                    |
| for all $(\bar{s}, \bar{a})$ with $\hat{p}(\bar{s}, \bar{a} s) > 0$ do                                                                          |                    |
| $ar{r}=\hat{r}(ar{s},ar{a},s)$ /* Get reward from model */                                                                                      |                    |
| $\mathbf{p} \leftarrow  ar{r} + \gamma \cdot \max_a \hat{Q}(s, a) - \hat{Q}(ar{s}, ar{a}) $ /* Compute priority $\mathbf{p}$ */                 |                    |
| $\mathbf{if} \ \mathbf{p} \! > \! \theta \ \mathbf{then}$                                                                                       |                    |
| Insert $(s, a)$ into PQ with priority <b>p</b> /* State-action needs update */                                                                  |                    |
| $\mathbf{end}$                                                                                                                                  |                    |
| $\mathbf{end}$                                                                                                                                  |                    |
| $\mathbf{end}$                                                                                                                                  |                    |
| end                                                                                                                                             |                    |

| Algorithm 3: Prioritized sweeping (Q-learning                                                     | with $\epsilon$ -greedy exploration).                                           |                    |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------|
| <b>Input:</b> Number of planning updates $K$ , explo                                              | ration parameter $\epsilon \in (0, 1]$ , learning rate                          |                    |
| $\alpha \in (0, 1]$ , discount parameter $\gamma \in [0, 1]$                                      | ], maximum number of timesteps $T$ ,                                            |                    |
| priority threshold $\theta$ .                                                                     |                                                                                 |                    |
| <b>Initialization</b> : Initialize $\hat{Q}(s, a) = 0$ , $n(s, a, s)$                             | $(s) = 0, R_{sum}(s, a, s') = 0  \forall s \in \mathcal{S}, a \in \mathcal{A},$ | Maintain a guava   |
| and prioritized queue PQ.                                                                         |                                                                                 | Maintain a queue   |
| for $t = 1T$ do                                                                                   |                                                                                 |                    |
| $s \leftarrow \text{current state}$ /* I                                                          | Reset when environment terminates */                                            |                    |
| $a \sim \pi_{\epsilon	ext{-greedy}}(a s)$                                                         | /* Sample action */                                                             | Loom a forward and |
| $r, s' \sim p(r, s' s, a)$                                                                        | /* Simulate environment */                                                      |                    |
| $\hat{p}(s', r s, a) \leftarrow \text{Update}(s, a, r, s')$                                       | /* Update model (Aig.1) */                                                      | hackward model     |
| $\mathbf{p} \leftarrow  r + \gamma \cdot \max_{a'} \hat{Q}(s', a') - \hat{Q}(s, a) $              | /* Compute priority $\mathbf{p}$ */                                             | Dackwaru mouer     |
| $\mathbf{if} \ \mathbf{p} > \theta \ \mathbf{then}$                                               |                                                                                 |                    |
| Insert $(s, a)$ into PQ with priority <b>p</b>                                                    | <pre>/* State-action needs update */</pre>                                      |                    |
| $\mathbf{end}$                                                                                    |                                                                                 |                    |
| /// Start sampling from PQ to perfo                                                               | rm updates                                                                      |                    |
| repeat $K$ times                                                                                  |                                                                                 |                    |
| $s, a \leftarrow \text{pop highest priority from PQ}$                                             | /* Sample $PQ$ , break when empty */                                            |                    |
| $s', r \sim \hat{p}(s', r s, a)$                                                                  | /* Simulate model */                                                            |                    |
| $\hat{Q}(s,a) \leftarrow \hat{Q}(s,a) + \alpha \cdot [r + \gamma \cdot \max_{a'} \hat{Q}]$        | $(s',a') - \hat{Q}(s,a)$ ] /* Update Q-table */                                 |                    |
| /// Loop over all state action that                                                               | t may lead to state s                                                           |                    |
| for all $(\bar{s}, \bar{a})$ with $\hat{p}(\bar{s}, \bar{a} s) > 0$ do                            |                                                                                 |                    |
| $ar{r} = \hat{r}(ar{s},ar{a},s)$                                                                  | <pre>/* Get reward from model */</pre>                                          |                    |
| $\mathbf{p} \leftarrow  \bar{r} + \gamma \cdot \max_a \hat{Q}(s, a) - \hat{Q}(\bar{s}, \bar{a}) $ | /* Compute priority p */                                                        |                    |
| if $\mathbf{p} > \theta$ then                                                                     |                                                                                 |                    |
| Insert $(s, a)$ into PQ with priori                                                               | ty $\mathbf{p}$ /* State-action needs update */                                 |                    |
| end                                                                                               |                                                                                 |                    |









Algorithm 3: Prioritized sweeping (Q-learning with  $\epsilon$ -greedy exploration).

**Input:** Number of planning updates K, exploration parameter  $\epsilon \in (0, 1]$ , learning rate  $\alpha \in (0,1]$ , discount parameter  $\gamma \in [0,1]$ , maximum number of timesteps T, priority threshold  $\theta$ . **Initialization**: Initialize  $\hat{Q}(s, a) = 0$ , n(s, a, s') = 0,  $R_{sum}(s, a, s') = 0$   $\forall s \in \mathcal{S}, a \in \mathcal{A}$ , and prioritized queue PQ. for t = 1...T do  $s \leftarrow \text{current state}$ /\* Reset when environment terminates \*/  $a \sim \pi_{\epsilon\text{-greedy}}(a|s)$ /\* Sample action \*/  $r, s' \sim p(r, s'|s, a)$ /\* Simulate environment \*/  $\hat{p}(s', r|s, a) \leftarrow \text{Update}(s, a, r, s')$ /\* Update model (Alg.1) \*/  $\mathbf{p} \leftarrow |r + \gamma \cdot \max_{a'} \hat{Q}(s', a') - \hat{Q}(s, a)|$ /\* Compute priority p \*/ if  $p > \theta$  then Insert (s, a) into PQ with priority **p** /\* State-action needs update \*/ end /// Start sampling from PQ to perform updates repeat K times  $s, a \leftarrow \text{pop highest priority from PQ}$ /\* Sample PQ, break when empty \*/  $s', r \sim \hat{p}(s', r|s, a)$ /\* Simulate model \*/  $\hat{Q}(s,a) \leftarrow \hat{Q}(s,a) + \alpha \cdot [r + \gamma \cdot \max_{a'} \hat{Q}(s',a') - \hat{Q}(s,a)]$  /\* Update Q-table \*/ /// Loop over all state action that may lead to state s for all  $(\bar{s}, \bar{a})$  with  $\hat{p}(\bar{s}, \bar{a}|s) > 0$  do  $\bar{r} = \hat{r}(\bar{s}, \bar{a}, s)$ /\* Get reward from model \*/  $\mathbf{p} \leftarrow |\bar{r} + \gamma \cdot \max_a \hat{Q}(s, a) - \hat{Q}(\bar{s}, \bar{a})|$ /\* Compute priority p \*/ if  $p > \theta$  then Insert (s, a) into PQ with priority **p** /\* State-action needs update \*/ end end end end

You will also implement this algorithm for the assignment!



### Summary 6: Model-based RL algorithms

Planning and learning can be combined in a variety of ways

# Summary 6: Model-based RL algorithms

Planning and learning can be combined in a variety of ways

- E.g., <u>Dyna</u>
  - Learn forward model
  - Use model to sample additional transition data
  - Apply standard model-free RL update to simulated experience as well.

# Summary 6: Model-based RL algorithms

Planning and learning can be combined in a variety of ways

- E.g., <u>Dyna</u>
  - Learn forward model
  - Use model to sample additional transition data
  - Apply standard model-free RL update to simulated experience as well.
- E.g., Prioritized sweeping
  - Learn a backward model
  - Use backward model to identify states that will likely change on the next update
  - Prioritize these states for updating in a separate queue

# To Do



#### Read

- Sutton and Barto, Chapter 8
- Lecture notes
- Take care to study the back-up diagrams and associated equations!

# To Do



#### Read

- Sutton and Barto, Chapter 8
- Lecture notes
- Take care to study the back-up diagrams and associated equations!

#### Assignment:

- 1. Implement two MBRL algorithms:
  - a. Dyna
  - b. Prioritized sweeping
- 2. Investigate their performance
- 3. Write a report



### Questions?