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- Irreversible access

-  When we take an action, we have to continue
from the next state

- Similar to the real world

- (Call such access an environment
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Access to the MDP dynamics

Dynamics function: p(s’|s,a)

Which next state s can we observe after taking action a in state s

Two important considerations:

1) Isour access reversible or irreversible? (model versus environment)

2) Do we get the full distribution of p(s’|s,a), or a sample?

p(s’=1)=0.1 s’ = 3! (this time)
p(s'=2) =0.2
p(s’=3)=0.7

Next page: 2-by-2 overview of these considerations
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Access to the MDP dynamics
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Access to the MDP dynamics
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S,a
Reversible a
p=0.7 p=0.05 p=0-15 n=2 n=1
Irreversible i In practice
does not
occur




Summary 1. Access to MDP dynamics

1. Reversible versus irreversible access

2. Distributional versus sample models



2) Difference between planning and learning
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Planning versus learning
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Local versus global solution

Question: can you guess what the difference between a local and global solution
might be?



- Alocal solution temporarily stores a solution for a DO
subset of all states
- focus on current state
- discarded after execution
- e.g, aplanning tree
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Planning versus learning

Problem: we have two possible distinctions

Local solution Global solution
Reversible MDP Planning Borderline/Model-based RL
access e.g., MCTS e.g., Dynamic Programming
Irreversible (impossible) Model-free RL
MDP access e.g., Q-learning

Q: Why is it impossible to use a local solution when we have irreversible access?
A: Local solutions get discarded after execution of the real action, but if the environment

is irreversible, we directly throw away our new solution after the first sample.
e



Summary 2: Planning versus learning

1. Planning: reversible model +  local solution
2. Model-free RL: irreversible model +  global solution
3. Borderline/model-based RL: reversible model +  global solution



3) Comparison of back-ups
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Expected versus sample back-ups

Our access to the MDP dynamics also influences the way we can back-up information!

Need to distinguish:
- Expected back-ups (mostly planning)

- Sample back-ups (mostly RL)

We will illustrate this difference with back-up diagrams
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Back-up diagrams

A back-up diagram graphically represents a one-step back-up equation
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Back-up diagrams

A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Bellman equation
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Back-up diagrams

A back-up diagram graphically represents a one-step back-up equation
Back-up diagram for the Temporal Difference Learning
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Back-up diagrams

A back-up diagram graphically represents a one-step back-up equation
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Back-up diagrams

A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Temporal Difference Learning
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Back-up diagrams

A back-up diagram graphically represents a one-step back-up equation
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Back-up diagrams

A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Temporal Difference Learning

S
This is a sample back-up over
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the actions (policy) and next
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S Sample estimates will converge
TD(0) to the correct equation over

multiple updates/samples
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Q: Categorize Q-learning.

Spectrum of possible 1-step back-ups
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Spectrum of possible 1-step back-ups
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Advice: carefully study these 1-step back-up diagrams, they provide a lot of insight/overview




Multi-step back-up diagrams

Can also extend the back-up over multiple-steps
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Multi-step back-up diagrams
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Multi-step back-up diagrams
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Back-up diagrams can provide much intuition about the space of possible back-ups

Essentially four considerations:

1) The width over the actions: sample (shallow) or expected (broad) -
?
2) The back-up policy: on-policy or off-policy R
QS
3) The width over the dynamics: sample (shallow) or expected (broad) A
Sarsa

4) The depth of the back-up: 1-step (shallow) or full depth (deep)

Question: can you indicate each decision for plain SARSA?



Break



4) Model-based reinforcement learning



Model-based Reinforcement Learning

Interaction with the real world is typically irreversible.

Q: How could we still obtain a model of how the world works?



Model-based Reinforcement Learning

When the environment is irreversible, maybe we can still

learn a reversible model from data

Inspired by the way humans acquire
(reversible) dynamics models:

we learn them from real-world
(irreversible) experience
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Model-based Reinforcement Learning

Model-free RL

value/policy (e.g, Q-learning)

acting
direct
RL

experience



value/policy

acting
direct

RL
model experience
p(s'lsa) (s.5)

f(s,a,s’)
model
learning



value/policy

acting
planning direct
RL
model experience
Model-based RL model
(e.g, Dyna) learning



Main benefit:

value/policy
Potentially more
data efficient
acting
planning direct
RL
model experience
Model-based RL model

learning

(e.g., Dyna)



Model-based Reinforcement Learning

Two important steps:

1. How tolearn a model from data? (Sec. 5)

2. How to integrate planning updates and learning updates? (Sec. 6)



5) Learning a model



Learning a model

Main question:

Given a dataset of observed transitions (s,a,r,s’), how can we estimate
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2) The reward r(s,a,s’) function?
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Dynamics estimation

1. Track counts n(s,a,s’)
a. Number of times we observed s’ after taking a in s.
b. Can estimate from transition data (s,a,r;s’)
c. Array of size |S| x |A| x [S]

2. Estimate p(s’|s,a) by normalizing the observed counts:
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Dynamics estimation

1. Track counts n(s,a,s’)
a. Number of times we observed s’ after taking a in s.
b. Can estimate from transition data (s,a,r;s’)
c. Array of size |S| x |A| x [S]

2. Estimate p(s’|s,a) by normalizing the observed counts:

Number of times we observed s’ after s,a

/

R n(s,a,s’) n(s,a,s’)
p(s']s,a) = = ,
n(s,a) Yoo n(s,a,s)

™

Total number of trials at s,a




Dynamics estimation

Example: After taking a=1 in s=1, we have stored the following counts:
e n(s=l,a=1,s=1)=4
e n(s=l,a=1,=2)=2
e n(s=1,a=1,=3)=6
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Dynamics estimation

Example: After taking a=1 in s=1, we have stored the following counts:
e n(s=l,a=1,s=1)=4
e n(s=l,a=1,=2)=2
e n(s=1,a=1,s'=3)=6

/
Q: Compute p(s’|s=1,a=1) p(s']s, a) = n(s,a,s’)

n(s,a)

o p(s'=li|s=1l,a=1)=4/12="
o p(s'=2|s=1la=1)=2/12="%
o p(s'=3|s=1,a=1)=6/12="



Learning a model

Main question:

Given a dataset of observed transitions (s,a,r,s’), how can we estimate
1) the dynamics p(s’|s,a) and

2) therewardr(s,a,s’) function?
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Reward function estimation

1. Also track total transition rewards R_ _(s,a,s’)
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b. Can estimate from transition data (s,a,r;,s’)
c. Array of size |S| x |A| x [S]
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Reward function estimation

1. Also track total transition rewards R_ _(s,a,s’)
a. Sum of all observed rewards when reaching s’ after taking a in s.
b. Can estimate from transition data (s,a,r;s’)
c. Array of size |S| x |A| x [S]

2. Estimate r(s,a,s’) by computing the average transition reward:

Total observed reward

Rsum(sa a? S,)

n(s,a,s’)

~—

Number of transitions

r(s,a,s’) =




Model estimation pseudocode

Full pseudocode in the lecture notes



Model estimation pseudocode

Full pseudocode in the lecture notes

Algorithm 1: Tabular model update pseudo-code. PS = prioritized sweeping.

Input: Maximum number of timesteps 7.
Initialization: Initialize n(s,a,s’) = 0 and Rgym(s,a,8') =0 Vse S,ac A
repeat 7T times

Observe (s,a,r,s’) /* Observe new transition

n(s,a,s’) < n(s,a,s")+1 /* Update transition counts

Roum(s,a,8") < Roaum(s,a,8) +r /* Update reward sums

p(s|s,a) = % /* Estimate transition function

flo, 08" = % /* Estimate reward function

p(s,als’) = En(b;l?;sa)s') /* Reverse model (only for PS)
end |
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Estimate tabular p(s’|s,a) and r(s,a,s’) from observed data tuples <s,a,r;.s’>

1. Maintain counts n(s,a,s’) and total rewards R___(s,a,s’).
sum
2. Compute transition model p(s’|s,a) from normalizing counts.

3. Compute reward model r(s,a,s’) from averaging total rewards.



Summary 5. Learning a model

Estimate tabular p(s’|s,a) and r(s,a,s’) from observed data tuples <s,a,r;.s’>

1. Maintain counts n(s,a,s’) and total rewards R___(s,a,s’).
sum
2. Compute transition model p(s’|s,a) from normalizing counts.

3. Compute reward model r(s,a,s’) from averaging total rewards.

Next section: how may this model be useful?



6) Model-based RL algorithms



Model-based RL algorithms

We want to make use of the learned model!

(combine planning and learning)



Model-based RL algorithms

Discuss three algorithms:
a) Real-time Dynamic Programming (RTDP)
b) Dyna

c) Prioritized sweeping



Model-based RL algorithms

Discuss three algorithms:

a) Real-time Dynamic Programming (RTDP)

b) Dyna

c) Prioritized sweeping
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a) Real-time Dynamic Programming

We already discussed Dynamic Programming (DP) in an earlier lecture

- Classic bridging algorithm between planning and learning
- Sweep through the entire state space

- At each state update with Bellman optimality equation

- Guaranteed convergence



a) Real-time Dynamic Programming

We already discussed Dynamic Programming (DP) in an earlier lecture

- Classic bridging algorithm between planning and learning
- Sweep through the entire state space

- At each state update with Bellman optimality equation

- Guaranteed convergence

Main problem = curse of dimensionality
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Insight: many states are often not even reachable from the start
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Real-time Dynamic Programming

Insight: many states are often not even reachable from the start

Irrelevant States:
unreachable from any start state

Start States under any optimal policy

DP focuses its
effort on all states

Relevant States
reachable from some start state
under some optimal policy

We would prefer
to focus on the
reachable states



Real-time Dynamic Programming

Solution of real-time DP:

apply DP updates on traces sampled from the start

(All model-free RL approaches do this by definition,

since the access to the MDP is then irreversible)



Real-time Dynamic Programming
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on-policy —
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/« DP updates are
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A state space
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Real-time Dynamic Programming

on-policy

DP updates are

uniform across
state space

10,000 STATES

Value of
start state
under
greedy
policy

(3]
L

In larger problems
updating on
trajectories from
the start is often
preferable

0 50.;)00 100:000 lSOtOOO 200',000
Computation time, in expected updates



Model-based RL algorithms

Discuss three algorithms:
a) Real-time Dynamic Programming (RTDP)
b) Dyna

c) Prioritized sweeping



Dyna

Main idea:
Learn a model to generate additional transition data,

apply standard update to these simulated transitions.
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Dyna

£ 5

7 \
Policy/value functions

\

direct RL
update

real
experience
Standard update
from observed
transition (s,a,;s’)

E.g. Q-learning

[Environment]
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Policy/value functions

planning update

direct RL simulated
“
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[Environmentj
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/ \ Standard update,
Poli/cy/value functions e.g. Q-learning

planning update

direct RL simulated
update experience
real )
experience Use model to
model search sample new
learning control (s,a,5s)
Model

[Environmentj

learn model



Dyna

Algorithm 2: Dyna Q-learning with e-greedy exploration.

Input: Number of planning updates K, exploration parameter € € (0, 1], learning rate

a € (0,1], discount parameter v € [0, 1], maximum number of timesteps 7.
Initialization: Initialize Q(s7 a) =0, n(s,a,s) =0, Rsum(s,a,s') =0 Vse S,ae A
fort =1..T do

S <— current state /* Reset when environment terminates */ _
@ ~. Tegreedy (@) /* Sample action */ (Q-learning)
r,s ~ p(r,s'|s,a) /* Simulate environment */
Q(s,a) < Q(s,a) + a-[r+v-max, Q(s',a’) — Q(s,a)] /* Update Q-table */
end




Dyna

Algorithm 2: Dyna Q-learning with e-greedy exploration.

Input: Number of planning updates K, exploration parameter € € (0, 1], learning rate

a € (0,1], discount parameter v € [0, 1], maximum number of timesteps 7.
Initialization: Initialize Q(s, a) =0, n(s,a,s) =0, Rsum(s,a,s') =0 Vse S,ae A
fort =1..T do

s < current state /* Reset when environment terminates */

@ ~. Tegreedy (@) /* Sample action */

r, s ~ p(r,s'|s,a) /* Simulate environment */

p(s’,r|s,a) « Update(s,a,r,s’) /* Update model (Alg. */) Learn model

Q(s, a) Q(s, a) + «-[r+ - maxg Q(s', a)— Q(s, a)] /* Update Q-table */

repeat K times
s - random previously observed state /* State to plan on */ Make_ k
a + previously taken action in state s /* Planning action */ planning
s',r~p(s',rls,a) /* Simulate model */ updates in
Q(s,a) « Q(s,a) +a- [r+~-maxy Q(s',a') — Q(s,a)] /* Update Q-table */ between

end every real

end Step




Dyna

Algorithm 2: Dyna Q-learning with e-greedy exploration.

Input: Number of planning updates K, exploration parameter € € (0, 1], learning rate

a € (0,1], discount parameter v € [0, 1], maximum number of timesteps 7.
Initialization: Initialize Q(s, a) =0, n(s,a,s) =0, Rsum(s,a,s') =0 Vse S,ae A
fort =1..T do

s < current state /* Reset when environment terminates */
@ ~. Tegreedy (@) /* Sample action */
r, s ~ p(r,s'|s,a) /* Simulate environment */
p(s’,r|s,a) « Update(s,a,r,s’) /* Update model (Alg. */
Q(s, a) Q(s, a) + «-[r+ - maxg Q(s', a)— Q(s, a)] /* Update Q-table */
repeat K times
s - random previously observed state /* State to plan on */
a < previously taken action in state s /* Planning action */
s,r~p(s',rls, a) /* Simulate model */
Q(s,a) « Q(s,a) +a- [r+~-maxy Q(s',a') — Q(s,a)] /* Update Q-table */
end
end

Algorithm you will implement in the assignment!



Dyna
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Model-based RL algorithms

Discuss three algorithms:
a) Real-time Dynamic Programming (RTDP)
b) Dyna

c) Prioritized sweeping



Prioritized sweeping

If the value estimate of a state changes a lot,

then the states that precede it should probably also be updated.



Prioritized sweeping

If the value estimate of a state changes a lot,

then the states that precede it should probably also be updated.

Main idea:

Use a backward/reverse model to identify states that likely need updating
(backwards search to spread information faster)



Prioritized sweeping




Prioritized sweeping

r Imagine we find a
new big reward



Prioritized sweeping

Standard one-step
update will only
back-up one step




Prioritized sweeping
Multistep updates
will propagate
further along the
trace

° o
/ 0O
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Prioritized sweeping

Main idea: prioritize states that deserve an update & additional backward search



Prioritized sweeping

Main idea: prioritize states that deserve an update & additional backward search

- Maintain priority queue, with priority as the absolute TD error

p  |r+v-maxy Q(s,a’) — Q(s, a)|

New Q-learning

. Current estimate
estimate



Prioritized sweeping

Algorithm 3: Prioritized sweeping (Q-learning with e-greedy exploration).

Input: Number of planning updates K, exploration parameter € € (0, 1], learning rate

a € (0,1], discount parameter v € [0, 1], maximum number of timesteps 7T,

priority threshold 6.

Initialization: Initialize Q(s, a) =0, n(s,a,s) =0, Reum(s,a,8) =0 Vse€S,acA,

and prioritized queue PQ.

fort=1..T do
s < current state /* Reset when environment terminates
@ ~ Tegreedy (@]$) /* Sample action
r,s" ~p(r,s'|s,a) /* Simulate environment
p(s’,r|s,a) « Update(s,a,r,s’) /* Update model (Alg.
p < |r+~-maxy Q(s',a') — Q(s,a)| /* Compute priority p
if p> 0 then
| Insert (s,a) into PQ with priority p /* State-action needs update
end

/// Start sampling from PQ to perform updates
repeat K times

/// Loop over all state action that may lead to state s
for all (s,a) with p(s,als) >0 do

7 ="7(5,a,s) /* Get reward from model
p < |[F+~ max, Q(s,a) — Q(5,a)| /* Compute priority p
if p> 6 then
| Insert (s,a) into PQ with priority p /* State-action needs update
end
end
end
end

s,a < pop highest priority from PQ /* Sample P(), break when empty
s’ ~p(s’,r|s,a) /* Simulate model

Q(s,a) « Q(s,a) + a- [r+~ -maxy Q(s',a’) — Q(s,a)] /* Update Q-table

*/
*/
*/
*/
*/

*/

*/
*/

*/
*/

*/

Pseudocode in
assignment/lecture
notes



Pseudocode in

prioritized S\X/eepi ﬂg assignment/lecture

notes
Algorithm 3: Prioritized sweeping (Q-learning with e-greedy exploration).
Input: Number of planning updates K, exploration parameter € € (0, 1], learning rate
a € (0,1], discount parameter v € [0, 1], maximum number of timesteps 7',
priority threshold 6.
Initialization: Initialize Q(s, a) =0, n(s,a,s) =0, Reum(s,a,8) =0 Vse€S,acA, . .
and prioritized queue PQ. ¢ Malntaln da queue
fort=1..T do
s <— current state /* Reset when environment terminates */
@ ~ Tegreedy (@]$) /* Sample action */
r,s' ~ p(r,s'ls, a) /* Simulate environment */
p(s',r|s,a) « Update(s,a,r,s’) /* Update model (Alg. */
p < |r+~-maxy Q(s',a') — Q(s,a)| /* Compute priority p */
if p> 0 then
| Insert (s,a) into PQ with priority p /* State-action needs update */
end

/// Start sampling from PQ to perform updates

repeat K times

s,a < pop highest priority from PQ /* Sample P(), break when empty */
s’ ~p(s’,r|s,a) /* Simulate model */
Q(s,a) « Q(s,a) + a- [r+~ -maxy Q(s',a’) — Q(s,a)] /* Update Q-table */
/// Loop over all state action that may lead to state s

for all (s,a) with p(s,als) >0 do

7 =17(8,a,s) /* Get reward from model */
p < |[F+~ max, Q(s,a) — Q(5,a)| /* Compute priority p */
if p> 6 then
| Insert (s,a) into PQ with priority p /* State-action needs update */
end
end
end
end




Pseudocode in

PriOI’itized S\X/eepi ﬂg assignment/lecture

notes
Algorithm 3: Prioritized sweeping (Q-learning with e-greedy exploration).
Input: Number of planning updates K, exploration parameter € € (0, 1], learning rate
a € (0,1], discount parameter v € [0, 1], maximum number of timesteps 7',
priority threshold 6.
Initialization: Initialize Q(s, a) =0, n(s,a,s) =0, Reum(s,a,8) =0 Vse€S,acA, . .
and prioritized queue PQ. ¢ Malntaln da queue
for t =1..T do
s <— current state /* Reset when environment terminates */
a4 ~ Tegreedy (@]s) /* Sample action */
r,s' ~ p(r,s'ls, a) /* Simulate environme'glt */ LeaI‘n d forward and
p(s',7|s,a) < Update(s,a,r,s') <mm T OO L BRI 1] =
A o e e backward model
p < |r+7 maxe Q(s',a") — Q(s,a)| /* Compute priority p */
if p> 0 then
| Insert (s,a) into PQ with priority p /* State-action needs update */
end

/// Start sampling from PQ to perform updates

repeat K times

s,a < pop highest priority from PQ /* Sample P(), break when empty */
s’ ~p(s’,r|s,a) /* Simulate model */
Q(s,a) <« Q(s,a) + a-[r+~ -maxy Q(s',a’) — Q(s,a)] /* Update Q-table */
/// Loop over all state action that may lead to state s

for all (s,a) with p(s,als) >0 do

T =7(5,a,s) /* Get reward from model */
p « |[F+7 -max,Q(s,a) — Q(5,a)| /* Compute priority p */
if p> 0 then
| Insert (s,a) into PQ with priority p /* State-action needs update */
end
end
end
end




Pseudocode in

PriOI’itized S\X/eepi ﬂg assignment/lecture

notes
Algorithm 3: Prioritized sweeping (Q-learning with e-greedy exploration).
Input: Number of planning updates K, exploration parameter € € (0, 1], learning rate
a € (0,1], discount parameter v € [0, 1], maximum number of timesteps 7',
priority threshold 6.
Initialization: Initialize Q(s,a) =0,n(s,a,s") =0, Reum(s,a,5') =0 Vse€S,acA, . .
and prioritized queue PQ. ¢ Malntaln da queue
fort=1..T do
s <— current state /* Reset when environment terminates */
@ ~ Tegreedy (@]$) /* Sample action */
r,s' ~ p(r,s'ls, a) /* Simulate environment */ LeaI‘n d forward and
p(s',r|s,a) « Update(s,a,r,s") < Vg vio T ar- a1l t=R uug.E}) %7 b k d d l
p < |r 4+~ maxqy Q(s',a’') — Q(s,a)| /* Compute priority p */ aCkward mode
if p> 0 then
| Insert (s,a) into PQ with priority p /* State-ac */
end
/// Start sampling from PQ to perform updates Add to queue based
repeat K times
s,a < pop highest priority from PQ /* Sample P(), break when empty */ on abSOlute error
s’ ~p(s’,r|s,a) /* Simulate model */

Q(s,a) <« Q(s,a) + a-[r+~ -maxy Q(s',a’) — Q(s,a)] /* Update Q-table */
/// Loop over all state action that may lead to state s
for all (s,a) with p(s,als) >0 do

T =7(5,a,s) /* Get reward from model */
p « |[F+7 -max,Q(s,a) — Q(5,a)| /* Compute priority p */
if p> 0 then
| Insert (s,a) into PQ with priority p /* State-action needs update */
end
end
end
end




Pseudocode in

PriOI’itized S\X/eepi ﬂg assignment/lecture

notes
Algorithm 3: Prioritized sweeping (Q-learning with e-greedy exploration).
Input: Number of planning updates K, exploration parameter € € (0, 1], learning rate
a € (0,1], discount parameter v € [0, 1], maximum number of timesteps 7',
priority threshold 6.
Initialization: Initialize Q(s,a) = 0, n(s,a,s’) = 0, Rsum(s,a,8') =0 Vse S,a€ A, . .
and prioritized queue PQ. ¢ Malntaln da queue
for t =1..T do
s <— current state /* Reset when environment terminates */
@ ~ Tegreedy (@]$) /* Sample action */
i o | gt /% Simulate environment */ Learn a forward and
p(s',r|s,a) « Update(s,a,r,s") < 7r—UpUaTe Moae T (AIZ (1) ¥/
p < |r 4+~ maxqy Q(s',a’') — Q(s,a)| /* Compute priority p */ baCkward mOdel
if p> 0 then
| Insert (s,a) into PQ with priority p /* State-ac */
end
/// Start sampling from PQ to perform updates Add to queue based
t K ti
frpeal,h Mmos on absolute error

s,a < pop highest priority from PQ le P(@), break when empty */
s’ ~p(s’,r|s,a) igulate model */
Q(s,a) < Q(s,a) + o~ [r+~ -maxy Q(s',a’) — Q(s,a)] /* Update Q-ta
/// Loop over all state action that may lead to state s

for all (s,a) with p(s,als) >0 do

Pop from queue

T =7(5,a,s) /* Get reward from model */
p « |[F+7 -max,Q(s,a) — Q(5,a)| /* Compute priority p */
if p> 0 then
| Insert (s,a) into PQ with priority p /* State-action needs update */
end
end
end
end




Pseudocode in

assignment/lecture
notes
Algorithm 3: Prioritized sweeping (Q-learning with e-greedy exploration).
Input: Number of planning updates K, exploration parameter € € (0, 1], learning rate
a € (0,1], discount parameter v € [0, 1], maximum number of timesteps 7',
priority threshold 6.
Initialization: Initialize Q(s,a) = 0, n(s,a,s’) = 0, Rsum(s,a,8') =0 Vse S,a€ A, . .
and prioritized queue PQ. ¢ Malntaln da queue
for t =1..T do
s <— current state /* Reset when environment terminates */
@ ~ Tegreedy (@]$) /* Sample action */
r,s' ~ p(r, |5, a) /% Simulate environment */ Learn a forward and
p(s',r|s,a) « Update(s,a,r,s") < PO Te MO0 T AL |I] ¥/
: ~ o backward model

p < |r+v maxy Q(s',a’) — Q(s,a)| /* Compute priority p */
if p> 0 then

| Insert (s,a) into PQ with priority p

*/

/* State-ac

end
/// Start sampling from PQ to perform updates Add to queue based
bt on absolute error

s,a < pop highest priority from PQ le P(@), break when empty */

s’ ~p(s’,r|s,a) ipulate model */

Q(s,a) < Q(s,a) + o [r+~ -maxy Q(s',a’) — Q(s,a)] /* Update Q-ta

/// Loop over all state action that may lead to stat®"

for all (s,a) with p(s,als) >0 do
7 =17(8,a,s) /* Get reward from mode

Pop from queue

p « |[F+~-max, Q(s,a) — Q(5,a)| /* Compute priority p */
if p> 0 then
| Insert (s,a) into PQ with priority p /* State-action needs update */
end
end

end

Update Q table

end




Pseudocode in

assignment/lecture
notes
Algorithm 3: Prioritized sweeping (Q-learning with e-greedy exploration).
Input: Number of planning updates K, exploration parameter € € (0, 1], learning rate
a € (0,1], discount parameter v € [0, 1], maximum number of timesteps 7',
priority threshold 6.
Initialization: Initialize Q(s,a) = 0, n(s,a,s’) = 0, Rsum(s,a,8') =0 Vse S,a€ A, . .
and prioritized queue PQ. ¢ Malntaln da queue
for t =1..T do
§ « current state /* Reset when environment terminates */
@ ~ Tegreedy (@]$) /* Sample action */
r,s' ~ p(r, |5, a) /% Simulate environment */ Learn a forward and
p(s',r|s,a) « Update(s,a,r,s") < PO Te MO0 T AL |I] ¥/
: A o backward model

p < |r+v maxy Q(s',a’) — Q(s,a)| /* Compute priority p */
if p> 0 then
| Insert (s,a) into PQ with priority p
end

/// Start sampling from PQ to perform updates

*/

/* State-ac

s,a < pop highest priority from PQ le P(@), break when empty */

s’ ~p(s’,r|s,a) ipulate model */

Q(s,a) < Q(s,a) + o [r+~ -maxy Q(s',a’) — Q(s,a)] /* Update Q-ta

/// Loop over all state action that may lead to stat®"

for all (s,a) with p(s,als) >0 do
T =7(5,a,s) /* Get reward from mode

p « |[F+~-max, Q(s,a) — Q(5,a)| /* Compute priority p */
if p> 0 then
| Insert (s,a) into PQ with priority p /* Sta& ction needs update */
end
end

end

end

queue

Add to queue based
repeat K times on absolute error

Pop from queue

Update Q table

Loop all precursors,
potentially add to



Prioritized sweeping

Algorithm 3: Prioritized sweeping (Q-learning with e-greedy exploration).

Input: Number of planning updates K, exploration parameter € € (0, 1], learning rate
a € (0,1], discount parameter v € [0, 1], maximum number of timesteps 7',
priority threshold 6.

Initialization: Initialize Q(s, a) =0, n(s,a,s) =0, Reum(s,a,8) =0 Vse€S,acA,

and prioritized queue PQ.

fort=1..T do
s < current state /* Reset when environment terminates */
@ ~ Tegreedy (@]$) /* Sample action */ .
r,s" ~p(r,s'|s,a) /* Simulate environmeit */ You Wlll alSO
p(s’,r|s,a) « Update(s,a,r,s’) /* Update model (Alg. */ . .
p < |r+~-maxy Q(s',a') — Q(s,a)| /* Compute priority p */ lmplement thlS
if p>§ then algorithm for the
| Insert (s,a) into PQ with priority p /* State-action needs update */ .
end assignment!

/// Start sampling from PQ to perform updates

repeat K times

s,a < pop highest priority from PQ /* Sample P(), break when empty */
s’ ~p(s’,r|s,a) /* Simulate model */
Q(s,a) « Q(s,a) + a- [r+~ -maxy Q(s',a’) — Q(s,a)] /* Update Q-table */
/// Loop over all state action that may lead to state s

for all (s,a) with p(s,als) >0 do

T =T7(5,a,s) /* Get reward from model */
p < |[F+~ max, Q(s,a) — Q(5,a)| /* Compute priority p */
if p> 6 then
| Insert (s,a) into PQ with priority p /* State-action needs update */
end
end
end
end




Prioritized sweeping
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Summary 6. Model-based RL algorithms

Planning and learning can be combined in a variety of ways



Summary 6. Model-based RL algorithms

Planning and learning can be combined in a variety of ways

- E.g, Dyna
- Learn forward model

- Use model to sample additional transition data
- Apply standard model-free RL update to simulated experience as well.



Summary 6. Model-based RL algorithms

Planning and learning can be combined in a variety of ways

- E.g, Dyna
- Learn forward model
- Use model to sample additional transition data

- Apply standard model-free RL update to simulated experience as well.

- E.g., Prioritized sweeping
- Learn a backward model
- Use backward model to identify states that will likely change on the next
update
- Prioritize these states for updating in a separate queue
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Assignment:
107
1. Implement two MBRL algorithms:
106 Dyna-Q
a. Dyna
L L] L . 105_
b. Prioritized sweeping o
until 104 Prioritized
optimal sweeping
solution ;34

2. Investigate their performance

1024

10 T T T T T T |
0 47 94 186 376 752 1504 3008 6016

3. Write a report Gridworld size (#states)



Questions?



