
Model-based Reinforcement Learning

Course: Reinforcement Learning, Bachelor AI, Leiden University

Lecturer: Thomas Moerland

I: Integrated view of planning and learning

II: Combination of planning and learning

Content

I: Integrated view of planning and learning

1. Access to the MDP dynamics
2. Planning versus learning
3. Types of back-ups

II: Combination of planning and learning

Content

I: Integrated view of planning and learning

1. Access to the MDP dynamics
2. Planning versus learning
3. Types of back-ups

II: Combination of planning and learning

4. Model-based reinforcement learning (MBRL)
5. Learning a model
6. Model-based RL algorithms

Content

1) Access to the MDP dynamics

Dynamics function: p(s’|s,a)

Which next state s can we observe after taking action a in state s

Access to the MDP dynamics

Dynamics function: p(s’|s,a)

Which next state s can we observe after taking action a in state s

Two important considerations:

1) Is our access reversible or irreversible?

Access to the MDP dynamics

- Reversible access
- We can take try any action in any state we want
- Similar to planning in our head
- Call such access a model

Access to the environment dynamics

- Reversible access
- We can take try any action in any state we want
- Similar to planning in our head
- Call such access a model

- Irreversible access
- When we take an action, we have to continue

from the next state
- Similar to the real world
- Call such access an environment

Access to the environment dynamics

Dynamics function: p(s’|s,a)

Which next state s can we observe after taking action a in state s

Two important considerations:

1) Is our access reversible or irreversible? (model versus environment)

Access to the MDP dynamics

Dynamics function: p(s’|s,a)

Which next state s can we observe after taking action a in state s

Two important considerations:

1) Is our access reversible or irreversible? (model versus environment)

2) Do we get the full distribution of p(s’|s,a), or a sample?

Access to the MDP dynamics

Dynamics function: p(s’|s,a)

Which next state s can we observe after taking action a in state s

Two important considerations:

1) Is our access reversible or irreversible? (model versus environment)

2) Do we get the full distribution of p(s’|s,a), or a sample?

p(s’=1) = 0.1 s’ = 3! (this time)

p(s’=2) = 0.2

p(s’=3) = 0.7

Access to the MDP dynamics

Dynamics function: p(s’|s,a)

Which next state s can we observe after taking action a in state s

Two important considerations:

1) Is our access reversible or irreversible? (model versus environment)

2) Do we get the full distribution of p(s’|s,a), or a sample?

p(s’=1) = 0.1 s’ = 3! (this time)

p(s’=2) = 0.2

p(s’=3) = 0.7

Access to the MDP dynamics

Next page: 2-by-2 overview of these considerations

Access to the MDP dynamics

Access to the MDP dynamics

White
nodes are

states,
black

nodes are
actions

Access to the MDP dynamics

‘Model’

Access to the MDP dynamics

Exact
probability

of each
next state

/distribution

Access to the MDP dynamics

Only
sample, but
repeatedly

Access to the MDP dynamics

‘Environment’

Access to the MDP dynamics

Only
sample

once, then
continue

Access to the MDP dynamics

In practice
does not

occur

1. Reversible versus irreversible access

2. Distributional versus sample models

Summary 1: Access to MDP dynamics

2) Difference between planning and learning

Planning Reinforcement learning

Planning versus learning

Planning Reinforcement learning

Planning versus learning

Planning Reinforcement learning

Planning versus learning

Planning Reinforcement learning

Planning versus learning

Both can solve
the same MDP
optimization

problem

So what discriminates planning from reinforcement learning?

Planning versus learning

So what discriminates planning from reinforcement learning?

Two factors:

1) Access to the MDP dynamics: reversible or irreversible

2) Storage of the solution: local or global

Planning versus learning

So what discriminates planning from reinforcement learning?

Two factors:

1) Access to the MDP dynamics: reversible or irreversible

2) Storage of the solution: local or global

Planning versus learning

Question: can you guess what the difference between a local and global solution
might be?

Local versus global solution

- A local solution temporarily stores a solution for a
subset of all states

- focus on current state
- discarded after execution
- e.g., a planning tree

Local versus global solution

- A local solution temporarily stores a solution for a
subset of all states

- focus on current state
- discarded after execution
- e.g., a planning tree

- A global solution permanently stores estimates for
all states

- e.g., a value table
- only option in (model-free) RL, because we

have to move forward and do not know when
we get back to a state

Local versus global solution

Problem: we have two possible distinctions

Planning versus learning

Problem: we have two possible distinctions

Planning versus learning

Local solution Global solution

Reversible MDP
access

Irreversible
MDP access

Problem: we have two possible distinctions

Planning versus learning

Local solution Global solution

Reversible MDP
access

Planning
e.g., MCTS

Irreversible
MDP access

Problem: we have two possible distinctions

Planning versus learning

Local solution Global solution

Reversible MDP
access

Planning
e.g., MCTS

Irreversible
MDP access

Model-free RL
e.g., Q-learning

Problem: we have two possible distinctions

Planning versus learning

Local solution Global solution

Reversible MDP
access

Planning
e.g., MCTS

Borderline/Model-based RL
e.g., Dynamic Programming

Irreversible
MDP access

Model-free RL
e.g., Q-learning

Problem: we have two possible distinctions

Planning versus learning

Local solution Global solution

Reversible MDP
access

Planning
e.g., MCTS

Borderline/Model-based RL
e.g., Dynamic Programming

Irreversible
MDP access

(impossible) Model-free RL
e.g., Q-learning

Q: Why is it impossible to use a local solution when we have irreversible access?

Problem: we have two possible distinctions

Planning versus learning

Local solution Global solution

Reversible MDP
access

Planning
e.g., MCTS

Borderline/Model-based RL
e.g., Dynamic Programming

Irreversible
MDP access

(impossible) Model-free RL
e.g., Q-learning

Q: Why is it impossible to use a local solution when we have irreversible access?
A: Local solutions get discarded after execution of the real action, but if the environment
is irreversible, we directly throw away our new solution after the first sample.

1. Planning: reversible model + local solution

2. Model-free RL: irreversible model + global solution

3. Borderline/model-based RL: reversible model + global solution

Summary 2: Planning versus learning

3) Comparison of back-ups

Our access to the MDP dynamics also influences the way we can back-up information!

Expected versus sample back-ups

Our access to the MDP dynamics also influences the way we can back-up information!

Need to distinguish:

- Expected back-ups (mostly planning)

- Sample back-ups (mostly RL)

Expected versus sample back-ups

Our access to the MDP dynamics also influences the way we can back-up information!

Need to distinguish:

- Expected back-ups (mostly planning)

- Sample back-ups (mostly RL)

We will illustrate this difference with back-up diagrams

Expected versus sample back-ups

A back-up diagram graphically represents a one-step back-up equation

Back-up diagrams

A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Bellman equation

Back-up diagrams

A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Bellman equation

Back-up diagrams

States are circles,

actions are dots

A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Bellman equation

Back-up diagrams

To compute a new
estimate of V(s)

A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Bellman equation

Back-up diagrams

We sum over all actions

A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Bellman equation

Back-up diagrams

For each action we sum
over all possible next

states

A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Bellman equation

Back-up diagrams

And for each possibility
back-up the reward plus
gamma times the next

value V(s’)

A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Bellman equation

Back-up diagrams

= full expectation over
the actions (policy) and
next states (dynamics)

A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Temporal Difference Learning

Back-up diagrams

A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Temporal Difference Learning

Back-up diagrams

To compute a new
estimate of V(s)

A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Temporal Difference Learning

Back-up diagrams

We sample a single action

A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Temporal Difference Learning

Back-up diagrams

For this action sample
a next state s’

A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Temporal Difference Learning

Back-up diagrams

And back-up r + γ * V(s’)

A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Temporal Difference Learning

Back-up diagrams

This is a sample back-up over
the actions (policy) and next

states (dynamics)

A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Temporal Difference Learning

Back-up diagrams

This is a sample back-up over
the actions (policy) and next

states (dynamics)

Sample estimates will converge
to the correct equation over
multiple updates/samples

Spectrum of possible 1-step back-ups

Spectrum of possible 1-step back-ups

State values V(s)

Spectrum of possible 1-step back-ups

State values V(s)

Expected Sample

Spectrum of possible 1-step back-ups

State values V(s)

On-policy

Sample

Off-policy

Expected

Spectrum of possible 1-step back-ups

State values V(s) State-action values Q(s,a)

On-policy

Sample SampleExpected

Off-policy

Expected

Spectrum of possible 1-step back-ups

State values V(s) State-action values Q(s,a)

On-policy

Sample SampleExpected

Off-policy

Expected

Q: Categorize Q-learning.

Spectrum of possible 1-step back-ups

On-policy

Sample SampleExpected

Off-policy

Expected

State values V(s) State-action values Q(s,a)

Spectrum of possible 1-step back-ups

Advice: carefully study these 1-step back-up diagrams, they provide a lot of insight/overview

On-policy

Sample SampleExpected

Off-policy

Expected

Multi-step back-up diagrams

Can also extend the back-up over multiple-steps

Multi-step back-up diagrams

Multi-step back-up diagrams

Sample Expected

Multi-step back-up diagrams

Sample Expected

Shallow
(1-step)

Deep

Multi-step back-up diagrams

Sample Expected

Shallow
(1-step)

Deep

TD learning:
small width,
small depth

Multi-step back-up diagrams

Sample Expected

Shallow
(1-step)

Deep

Exhaustive
search:

full width,
full depth

Multi-step back-up diagrams

Sample Expected

Shallow
(1-step)

Deep

DP:
full width,

small depth

Multi-step back-up diagrams

Sample Expected

Shallow
(1-step)

Deep

MC RL:
small width, full

depth

Multi-step back-up diagrams

Sample Expected

Shallow
(1-step)

Whole spectrum of
width/depth back-up

combinations

Again, carefully study,
much insight!

Back-up diagrams can provide much intuition about the space of possible back-ups

Summary 3: Types of back-ups

Back-up diagrams can provide much intuition about the space of possible back-ups

Essentially four considerations:

1) The width over the actions: sample (shallow) or expected (broad)

2) The back-up policy: on-policy or off-policy

3) The width over the dynamics: sample (shallow) or expected (broad)

4) The depth of the back-up: 1-step (shallow) or full depth (deep)

Summary 3: Types of back-ups

Back-up diagrams can provide much intuition about the space of possible back-ups

Essentially four considerations:

1) The width over the actions: sample (shallow) or expected (broad)

2) The back-up policy: on-policy or off-policy

3) The width over the dynamics: sample (shallow) or expected (broad)

4) The depth of the back-up: 1-step (shallow) or full depth (deep)

Question: can you indicate each decision for plain SARSA?

Summary 3: Types of back-ups

Back-up diagrams can provide much intuition about the space of possible back-ups

Essentially four considerations:

1) The width over the actions: sample (shallow) or expected (broad)

2) The back-up policy: on-policy or off-policy

3) The width over the dynamics: sample (shallow) or expected (broad)

4) The depth of the back-up: 1-step (shallow) or full depth (deep)

Question: can you indicate each decision for plain SARSA?

Summary 3: Types of back-ups

Break

4) Model-based reinforcement learning

Interaction with the real world is typically irreversible.

Q: How could we still obtain a model of how the world works?

Model-based Reinforcement Learning

When the environment is irreversible, maybe we can still

learn a reversible model from data

Model-based Reinforcement Learning

Inspired by the way humans acquire
(reversible) dynamics models:

we learn them from real-world
(irreversible) experience

Model-based Reinforcement Learning

Model-based Reinforcement Learning

Model-free RL

(e.g., Q-learning)

Model-based Reinforcement Learning

(s,a,r,s’)
p̂(s’|s,a)

r̂(s,a,s’)

Model-based Reinforcement Learning

Model-based RL

(e.g., Dyna)

Model-based Reinforcement Learning

Model-based RL

(e.g., Dyna)

Main benefit:

Potentially more
data efficient

Model-based Reinforcement Learning

Two important steps:

1. How to learn a model from data? (Sec. 5)

2. How to integrate planning updates and learning updates? (Sec. 6)

5) Learning a model

Main question:

Given a dataset of observed transitions (s,a,r,s’), how can we estimate

1) the dynamics p(s’|s,a) and

2) The reward r(s,a,s’) function?

Learning a model

Main question:

Given a dataset of observed transitions (s,a,r,s’), how can we estimate

1) the dynamics p(s’|s,a) and

2) The reward r(s,a,s’) function?

Learning a model

1. Track counts n(s,a,s’)
a. Number of times we observed s’ after taking a in s.

Dynamics estimation

1. Track counts n(s,a,s’)
a. Number of times we observed s’ after taking a in s.
b. Can estimate from transition data (s,a,r,s’)

Dynamics estimation

1. Track counts n(s,a,s’)
a. Number of times we observed s’ after taking a in s.
b. Can estimate from transition data (s,a,r,s’)
c. Array of size |S| x |A| x |S|

Dynamics estimation

1. Track counts n(s,a,s’)
a. Number of times we observed s’ after taking a in s.
b. Can estimate from transition data (s,a,r,s’)
c. Array of size |S| x |A| x |S|

2. Estimate p(s’|s,a) by normalizing the observed counts:

Dynamics estimation

1. Track counts n(s,a,s’)
a. Number of times we observed s’ after taking a in s.
b. Can estimate from transition data (s,a,r,s’)
c. Array of size |S| x |A| x |S|

2. Estimate p(s’|s,a) by normalizing the observed counts:

Dynamics estimation

Number of times we observed s’ after s,a

Total number of trials at s,a

1. Track counts n(s,a,s’)
a. Number of times we observed s’ after taking a in s.
b. Can estimate from transition data (s,a,r,s’)
c. Array of size |S| x |A| x |S|

2. Estimate p(s’|s,a) by normalizing the observed counts:

Dynamics estimation

Number of times we observed s’ after s,a

Total number of trials at s,a

Example: After taking a=1 in s=1, we have stored the following counts:

● n(s=1,a=1,s’=1) = 4
● n(s=1,a=1,s’=2) = 2
● n(s=1,a=1,s’=3) = 6

Dynamics estimation

Example: After taking a=1 in s=1, we have stored the following counts:

● n(s=1,a=1,s’=1) = 4
● n(s=1,a=1,s’=2) = 2
● n(s=1,a=1,s’=3) = 6

Q: Compute p(s’|s=1,a=1)

Dynamics estimation

Example: After taking a=1 in s=1, we have stored the following counts:

● n(s=1,a=1,s’=1) = 4
● n(s=1,a=1,s’=2) = 2
● n(s=1,a=1,s’=3) = 6

Q: Compute p(s’|s=1,a=1)

A:

● p(s’=1|s=1,a=1) = 4/12 = ⅓
● p(s’=2|s=1,a=1) = 2/12 = ⅙
● p(s’=3|s=1,a=1) = 6/12 = ½

Dynamics estimation

Main question:

Given a dataset of observed transitions (s,a,r,s’), how can we estimate

1) the dynamics p(s’|s,a) and

2) the reward r(s,a,s’) function?

Learning a model

1. Also track total transition rewards R
sum

(s,a,s’)
a. Sum of all observed rewards when reaching s’ after taking a in s.

Reward function estimation

1. Also track total transition rewards R
sum

(s,a,s’)
a. Sum of all observed rewards when reaching s’ after taking a in s.
b. Can estimate from transition data (s,a,r,s’)
c. Array of size |S| x |A| x |S|

Reward function estimation

1. Also track total transition rewards R
sum

(s,a,s’)
a. Sum of all observed rewards when reaching s’ after taking a in s.
b. Can estimate from transition data (s,a,r,s’)
c. Array of size |S| x |A| x |S|

2. Estimate r(s,a,s’) by computing the average transition reward:

Reward function estimation

1. Also track total transition rewards R
sum

(s,a,s’)
a. Sum of all observed rewards when reaching s’ after taking a in s.
b. Can estimate from transition data (s,a,r,s’)
c. Array of size |S| x |A| x |S|

2. Estimate r(s,a,s’) by computing the average transition reward:

Reward function estimation

Total observed reward

Number of transitions

Model estimation pseudocode

Full pseudocode in the lecture notes

Model estimation pseudocode

Full pseudocode in the lecture notes

Estimate tabular p(s’|s,a) and r(s,a,s’) from observed data tuples <s,a,r,s’>

Summary 5: Learning a model

Estimate tabular p(s’|s,a) and r(s,a,s’) from observed data tuples <s,a,r,s’>

1. Maintain counts n(s,a,s’) and total rewards R
sum

(s,a,s’).

Summary 5: Learning a model

Estimate tabular p(s’|s,a) and r(s,a,s’) from observed data tuples <s,a,r,s’>

1. Maintain counts n(s,a,s’) and total rewards R
sum

(s,a,s’).

2. Compute transition model p(s’|s,a) from normalizing counts.

Summary 5: Learning a model

Estimate tabular p(s’|s,a) and r(s,a,s’) from observed data tuples <s,a,r,s’>

1. Maintain counts n(s,a,s’) and total rewards R
sum

(s,a,s’).

2. Compute transition model p(s’|s,a) from normalizing counts.

3. Compute reward model r(s,a,s’) from averaging total rewards.

Summary 5: Learning a model

Estimate tabular p(s’|s,a) and r(s,a,s’) from observed data tuples <s,a,r,s’>

1. Maintain counts n(s,a,s’) and total rewards R
sum

(s,a,s’).

2. Compute transition model p(s’|s,a) from normalizing counts.

3. Compute reward model r(s,a,s’) from averaging total rewards.

Next section: how may this model be useful?

Summary 5: Learning a model

6) Model-based RL algorithms

We want to make use of the learned model!

(combine planning and learning)

Model-based RL algorithms

Discuss three algorithms:

a) Real-time Dynamic Programming (RTDP)

b) Dyna

c) Prioritized sweeping

Model-based RL algorithms

Discuss three algorithms:

a) Real-time Dynamic Programming (RTDP)

b) Dyna

c) Prioritized sweeping

Model-based RL algorithms

We already discussed Dynamic Programming (DP) in an earlier lecture

a) Real-time Dynamic Programming

We already discussed Dynamic Programming (DP) in an earlier lecture

- Classic bridging algorithm between planning and learning
- Sweep through the entire state space
- At each state update with Bellman optimality equation
- Guaranteed convergence

a) Real-time Dynamic Programming

We already discussed Dynamic Programming (DP) in an earlier lecture

- Classic bridging algorithm between planning and learning
- Sweep through the entire state space
- At each state update with Bellman optimality equation
- Guaranteed convergence

Main problem = curse of dimensionality

a) Real-time Dynamic Programming

Insight: many states are often not even reachable from the start

Real-time Dynamic Programming

Insight: many states are often not even reachable from the start

Real-time Dynamic Programming

Insight: many states are often not even reachable from the start

Real-time Dynamic Programming

DP focuses its
effort on all states

Insight: many states are often not even reachable from the start

Real-time Dynamic Programming

DP focuses its
effort on all states

We would prefer
to focus on the

reachable states

Solution of real-time DP:

apply DP updates on traces sampled from the start

(All model-free RL approaches do this by definition,

since the access to the MDP is then irreversible)

Real-time Dynamic Programming

Real-time Dynamic Programming

Real-time Dynamic Programming

DP updates are
uniform across

state space

Real-time Dynamic Programming

DP updates are
uniform across

state space

In larger problems
updating on

trajectories from
the start is often

preferable

Discuss three algorithms:

a) Real-time Dynamic Programming (RTDP)

b) Dyna

c) Prioritized sweeping

Model-based RL algorithms

Main idea:

Learn a model to generate additional transition data,

apply standard update to these simulated transitions.

Dyna

Dyna

Dyna

Standard update
from observed

transition (s,a,r,s’)

E.g. Q-learning

Dyna

Dyna

learn model

Dyna

Use model to
sample new

(s,a,r,s’)

learn model

Dyna

Standard update,
e.g. Q-learning

Use model to
sample new

(s,a,r,s’)

learn model

Dyna

(Q-learning)

Dyna

Make k
planning

updates in
between

every real
step

Learn model

Dyna

Algorithm you will implement in the assignment!

Dyna

Dyna

Discuss three algorithms:

a) Real-time Dynamic Programming (RTDP)

b) Dyna

c) Prioritized sweeping

Model-based RL algorithms

If the value estimate of a state changes a lot,

then the states that precede it should probably also be updated.

Prioritized sweeping

If the value estimate of a state changes a lot,

then the states that precede it should probably also be updated.

Main idea:

Use a backward/reverse model to identify states that likely need updating
(backwards search to spread information faster)

Prioritized sweeping

Prioritized sweeping

Prioritized sweeping

Imagine we find a
new big reward

Prioritized sweeping

Standard one-step
update will only
back-up one step

Prioritized sweeping
Multistep updates

will propagate
further along the

trace

Prioritized sweeping
Prioritized
sweeping

identifies states
that may also lead

to the new
information, and
prioritizes these

for updating

Prioritized sweeping
Prioritized
sweeping

identifies states
that may also lead

to the new
information, and
prioritizes these

for updating

Main idea: prioritize states that deserve an update & additional backward search

Prioritized sweeping

Main idea: prioritize states that deserve an update & additional backward search

- Maintain priority queue, with priority as the absolute TD error

Prioritized sweeping

New Q-learning
estimate

Current estimate

Prioritized sweeping
Pseudocode in

assignment/lecture
notes

Prioritized sweeping
Pseudocode in

assignment/lecture
notes

Maintain a queue

Prioritized sweeping
Pseudocode in

assignment/lecture
notes

Maintain a queue

Learn a forward and
backward model

Prioritized sweeping
Pseudocode in

assignment/lecture
notes

Maintain a queue

Learn a forward and
backward model

Add to queue based
on absolute error

Prioritized sweeping
Pseudocode in

assignment/lecture
notes

Maintain a queue

Learn a forward and
backward model

Pop from queue

Add to queue based
on absolute error

Prioritized sweeping
Pseudocode in

assignment/lecture
notes

Maintain a queue

Learn a forward and
backward model

Pop from queue

Add to queue based
on absolute error

Update Q table

Prioritized sweeping
Pseudocode in

assignment/lecture
notes

Maintain a queue

Learn a forward and
backward model

Pop from queue

Add to queue based
on absolute error

Update Q table

Loop all precursors,
potentially add to

queue

Prioritized sweeping

You will also
implement this

algorithm for the
assignment!

Prioritized sweeping

Planning and learning can be combined in a variety of ways

Summary 6: Model-based RL algorithms

Planning and learning can be combined in a variety of ways

- E.g., Dyna
- Learn forward model
- Use model to sample additional transition data
- Apply standard model-free RL update to simulated experience as well.

Summary 6: Model-based RL algorithms

Planning and learning can be combined in a variety of ways

- E.g., Dyna
- Learn forward model
- Use model to sample additional transition data
- Apply standard model-free RL update to simulated experience as well.

- E.g., Prioritized sweeping
- Learn a backward model
- Use backward model to identify states that will likely change on the next

update
- Prioritize these states for updating in a separate queue

Summary 6: Model-based RL algorithms

Read

- Sutton and Barto, Chapter 8
- Lecture notes
- Take care to study the back-up diagrams and associated equations!

To Do

Read

- Sutton and Barto, Chapter 8
- Lecture notes
- Take care to study the back-up diagrams and associated equations!

Assignment:

1. Implement two MBRL algorithms:
a. Dyna
b. Prioritized sweeping

2. Investigate their performance

3. Write a report

To Do

Questions?

