Model-based Reinforcement Learning

Course: Reinforcement Learning, Bachelor Al, Leiden University

Lecturer; Thomas Moerland

Content

I: Integrated view of planning and learning

II: Combination of planning and learning

Content

I: Integrated view of planning and learning

1. Access to the MDP dynamics
2. Planning versus learning
3. Types of back-ups

II: Combination of planning and learning

Content

I: Integrated view of planning and learning

1. Access to the MDP dynamics
2. Planning versus learning
3. Types of back-ups

II: Combination of planning and learning

4. Model-based reinforcement learning (MBRL)
5. Learning a model
6. Model-based RL algorithms

1) Access to the MDP dynamics

Access to the MDP dynamics

Dynamics function: p(s’|s,a)

Which next state s can we observe after taking action a in state s

Access to the MDP dynamics

Dynamics function: p(s’|s,a)

Which next state s can we observe after taking action a in state s

Two important considerations:

1) Is our access reversible or irreversible?

- Reversible access
- We can take try any action in any state we want
- Similar to planning in our head
- (Call such access a model

- Reversible access

- We can take try any action in any state we want
- Similar to planning in our head
- Call such access a model

- Irreversible access

- When we take an action, we have to continue
from the next state

- Similar to the real world

- (Call such access an environment

Access to the MDP dynamics

Dynamics function: p(s’|s,a)

Which next state s can we observe after taking action a in state s

Two important considerations:

1) Isour access reversible or irreversible? (model versus environment)

Access to the MDP dynamics

Dynamics function: p(s’|s,a)

Which next state s can we observe after taking action a in state s

Two important considerations:

1) Isour access reversible or irreversible? (model versus environment)

2) Do we get the full distribution of p(s’|s,a), or a sample?

Access to the MDP dynamics

Dynamics function: p(s’|s,a)

Which next state s can we observe after taking action a in state s

Two important considerations:

1) Isour access reversible or irreversible? (model versus environment)

2) Do we get the full distribution of p(s’|s,a), or a sample?

p(s’=1)=0.1 s’ = 3! (this time)
p(s'=2) =0.2
p(s’=3)=0.7

Access to the MDP dynamics

Dynamics function: p(s’|s,a)

Which next state s can we observe after taking action a in state s

Two important considerations:

1) Isour access reversible or irreversible? (model versus environment)

2) Do we get the full distribution of p(s’|s,a), or a sample?

p(s’=1)=0.1 s’ = 3! (this time)
p(s'=2) =0.2
p(s’=3)=0.7

Next page: 2-by-2 overview of these considerations

Access to the MDP dynamics

Analytic

Sample

s,a

Reversible "

p=0,7 p=0.05 p=0. 15 n=2

Irreversible

n=1

Access to the MDP dynamics

Analytic

Sample

Reversible

Irreversible

s,a

p=0.7

p=0.05 p=0.15

A~
E

White
nodes are
states,
black
nodes are
actions

Access to the MDP dynamics

Analytic

Sample

Reversible

S!

S,a

n=2

n=1

Irreversible

‘Model’

Access to the MDP dynamics

Analytic/distribution Sample
e Exact
probability
Reversible . of each
next state
p=0.7 p=0.05 p=0.15 n=2 n=1

Irreversible

Access to the MDP dynamics

Analytic

Sample

Reversible

Irreversible

s,a

p=0.7

p=0.05 p=0.15

n=1

Only
sample, but
repeatedly

Access to the MDP dynamics

Analytic Sample

S,a

Reversible a

p=0.7 p=0.05 p=0.15 n=2 n=1

Irreversible

‘Environment’

Access to the MDP dynamics

Analytic Sample
s, a
Reversible a
p=0.7 p=0.05 p=0.15 n=2 n=1
Irreversible = Only
sample
once, then
continue

Access to the MDP dynamics

Analytic Sample
S,a
Reversible a
p=0.7 p=0.05 p=0-15 n=2 n=1
Irreversible i In practice
does not
occur

Summary 1. Access to MDP dynamics

1. Reversible versus irreversible access

2. Distributional versus sample models

2) Difference between planning and learning

Planning versus learning

Planning Reinforcement learning

Planning versus learning

Planning Reinforcement learning

Planning versus learning

Planning Reinforcement learning

\

state reward action
S, R, A

R.,
_S.. | Environment

@ Action
State g 1 2 3% A4 °5
(9 (9 @) 0 [-1-1-1-1 0 -1
1 |1 =1 =1 0 =1 100
(@) @3) (o) () (w) Q= 2 |-1 =1 -1 0 =1 -1
& |2t i@ 0=k @
(@) (2 4 o -1-1 0-1100
5 -1 0-1-1 0100
@ L i

Planning versus learning

Planning

Reinforcement learning

\

state

reward

R,

Both can solve State
the same MDP (1)
optimization 8=
problem 451

0
<1 =1 =1 <1 @ 1
<T =1 =1 0 =1 100
IF ol el Bl)

==l

=1

41
.. | Environment }4—

Action
i 2 3 4 5

0 0-1 0 -1

0 =11 0 =1:100
0-1-1 0100

action
A

Planning versus learning

So what discriminates planning from reinforcement learning?

Planning versus learning

So what discriminates planning from reinforcement learning?

Two factors:
1) Access to the MDP dynamics: reversible or irreversible

2) Storage of the solution: local or global

Planning versus learning

So what discriminates planning from reinforcement learning?

Two factors:

1) Access to the MDP dynamics: reversible or irreversible

2) Storage of the solution: local or global

Local versus global solution

Question: can you guess what the difference between a local and global solution
might be?

- Alocal solution temporarily stores a solution for a DO
subset of all states
- focus on current state
- discarded after execution
- e.g, aplanning tree

Local versus global solution

D,
- Alocal solution temporarily stores a solution for a @) @
subset of all states @ @ @ 0D W
- focus on current state @ @
- discarded after execution @)

- e.g, aplanning tree

»
a
-3
o
w 3

State

(=2

- A global solution permanently stores estimates for
all states e
- e.g, avalue table
- only option in (model-free) RL, because we
have to move forward and do not know when
we get back to a state

|
—_

—_—
|

&b Ll

| [

e
1 [
O e N

oloo

| [

—o

o
[=
S =S =

MAEAWR~O
—_—

f=g=1

(=]

|
—
=}

|
—_
=}

Planning versus learning

Problem: we have two possible distinctions

Planning versus learning

Problem: we have two possible distinctions

[.ocal solution

Global solution

Reversible MDP

dCCesS

Irreversible
MDP access

Planning versus learning

Problem: we have two possible distinctions

[.ocal solution

Global solution

Reversible MDP Planning
access e.g., MCTS
Irreversible
MDP access

Planning versus learning

Problem: we have two possible distinctions

[.ocal solution

Global solution

Reversible MDP Planning
access e.g., MCTS
Irreversible Model-free RL
MDP access e.g., Q-learning

Planning versus learning

Problem: we have two possible distinctions

Local solution Global solution
Reversible MDP Planning Borderline/Model-based RL
access e.g., MCTS e.g., Dynamic Programming
Irreversible Model-free RL
MDP access e.g., Q-learning

Planning versus learning

Problem: we have two possible distinctions

Local solution Global solution
Reversible MDP Planning Borderline/Model-based RL
access e.g., MCTS e.g., Dynamic Programming
Irreversible (impossible) Model-free RL
MDP access e.g., Q-learning

Q: Why is it impossible to use a local solution when we have irreversible access?

Planning versus learning

Problem: we have two possible distinctions

Local solution Global solution
Reversible MDP Planning Borderline/Model-based RL
access e.g., MCTS e.g., Dynamic Programming
Irreversible (impossible) Model-free RL
MDP access e.g., Q-learning

Q: Why is it impossible to use a local solution when we have irreversible access?
A: Local solutions get discarded after execution of the real action, but if the environment

is irreversible, we directly throw away our new solution after the first sample.
e

Summary 2: Planning versus learning

1. Planning: reversible model + local solution
2. Model-free RL: irreversible model + global solution
3. Borderline/model-based RL: reversible model + global solution

3) Comparison of back-ups

Expected versus sample back-ups

Our access to the MDP dynamics also influences the way we can back-up information!

Expected versus sample back-ups

Our access to the MDP dynamics also influences the way we can back-up information!

Need to distinguish:
- Expected back-ups (mostly planning)

- Sample back-ups (mostly RL)

Expected versus sample back-ups

Our access to the MDP dynamics also influences the way we can back-up information!

Need to distinguish:
- Expected back-ups (mostly planning)

- Sample back-ups (mostly RL)

We will illustrate this difference with back-up diagrams

Back-up diagrams

A back-up diagram graphically represents a one-step back-up equation

Back-up diagrams

A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Bellman equation

N K

00 00 OO

policy evaluation

Back-up diagrams

A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Bellman equation _
States are circles,

actions are dots

00 00 OO

policy evaluation

Back-up diagrams

A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Bellman equation

To compute a new
estimate of V(s)

00 00 OO

policy evaluation

Back-up diagrams

A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Bellman equation

We sum over all actions

00 00 OO

policy evaluation

Back-up diagrams

A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Bellman equation

a

< o .
p y For each action we sum

86 @ B O OF over all possible next

states
policy evaluation

Back-up diagrams

A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Bellman equation

00 00 O0OF

policy evaluation And for each possibility

back-up the reward plus
gamma times the next
value V(s’)

Back-up diagrams

A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Bellman equation

= full expectation over
the actions (policy) and r

next states (dynamics) -
Q0 O OOs

policy evaluation

Back-up diagrams

A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Temporal Difference Learning

O

Back-up diagrams

A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Temporal Difference Learning

To compute a new
estimate of V(s)

D

s
Q

Back-up diagrams

A back-up diagram graphically represents a one-step back-up equation
Back-up diagram for the Temporal Difference Learning

s
Q

< We sample a single action

Back-up diagrams

A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Temporal Difference Learning

S
Q
oA
For this action sample
R(,) ’ - a next state s’
S
TD(0)

Back-up diagrams

A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Temporal Difference Learning

s
Q
oA
R

/
OS' -— __ Andback-upr+7v*V(s)
TD(0)

Back-up diagrams

A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Temporal Difference Learning

S
Q
This is a sample back-up over %
the actions (policy) and next ?
states (dynamics) R '
s’
TD(0)

Back-up diagrams

A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Temporal Difference Learning

S
This is a sample back-up over
. . A
the actions (policy) and next
states (dynamics) R
S Sample estimates will converge
TD(0) to the correct equation over

multiple updates/samples

Spectrum of possible 1-step back-ups

Spectrum of possible 1-step back-ups

Value Expected updates Sample updates
estimated (DP) (one-step TD)

S S
e
o Lk
OO0 OO opo.s’ S’
policy evaluation TD(0)
S

max
[

Vi (8) /\O T
OO0 OO0 0O0¢

value iteration

State values V(s)

Spectrum of possible 1-step back-ups

Expected Sample

Value Expected updates Sample updates
estimated (DP) (one-step TD)

S S

o hn o

OO OO O Os s’

policy evaluation TD(0)
S
max "
Vi (8) /\O T

OO OO0 OO
value iteration

State values V(s)

Spectrum of possible 1-step back-ups

Value
estimated

On-policy v (8)

Off-policy v.(s)

Expected

Expected updates
(DP)

Sample

Sample updates
(one-step TD)

S
A
R
Sl

TD(0)

State values V(s)

Spectrum of possible 1-step back-ups

Expected Sample

Value Expected updates Sample updates
estimated (DP) (one-step TD)

S S

- NN]
On-policy o, (s) /\mr RlA

00 00 oo s’
policy evaluation TD(0)
S
max

[

ANAK
OO0 OO0 0O0¢

value iteration

Off-policy wv.(s)

State values V(s)

Expected Sample

Value Expected updates Sample updates
estimated (DP) (one-step TD)
s,a s,a

AN / RI
S !
4= (s, a) ﬁ\ (fs
e ¢ ed oA

g-policy evaluation Sarsa
s,a s,a
pP\T
s’ RI
‘ !
q«\S,a S
(?) e max
e o e eod e o ‘ed
g-value iteration Q-learning

State-action values Q(s,a)

Q: Categorize Q-learning.

Spectrum of possible 1-step back-ups

Expected Sample

Value Expected updates Sample updates
estimated (DP) (one-step TD)

S S

- NN]
On-policy o, (s) /\mr RlA

00 00 oo s’
policy evaluation TD(0)
S
max

[

ANAK
OO0 OO0 0O0¢

value iteration

Off-policy wv.(s)

State values V(s)

Expected Sample

Value Expected updates Sample updates
estimated (DP) (one-step TD)
s,a s,a

AN / RI
S !
4= (s, a) ﬁ\ (fs
e ¢ ed oA

g-policy evaluation Sarsa
s,a s,a
pP\T
s’ RI
‘ !
q«\S,a S
(?) e max
e o e eod e o ‘ed
g-value iteration Q-learning

State-action values Q(s,a)

Spectrum of possible 1-step back-ups

Expected Sample

Value Expected updates Sample updates
estimated (DP) (one-step TD)

S S

- NN]
On-policy o, (s) /\mr RlA

00 00 oo s’
policy evaluation TD(0)
S
max

Off-policy v.(s) /\ /\ o\

OO OO OOs

value iteration

State values V(s)

Expected Sample

Value Expected updates Sample updates
estimated (DP) (one-step TD)
s, a s,a

AN / RI
S !
4= (s, a) ﬁ\ (fS
e ¢ ed oA

g-policy evaluation Sarsa
s,a s,a
pP\T
A
2 !
q«\S,a S
(?) e max
e o e eod e o ‘ed
g-value iteration Q-learning

State-action values Q(s,a)

Spectrum of possible 1-step back-ups

Expected Sample Expected Sample
Value Expected updates Sample updates Value Expected updates Sample updates
estimated (DP) (one-step TD) estimated (DP) (one-step TD)
S s s,a s,a
On-poli ' I Nt #]
n-poiic ! A #

p y UW(S) A p r RI q‘/r(sva) A TSI

G0 @ O 0o oS’ o ¢ od oA

policy evaluation TD(0) g-policy evaluation Sarsa

s,a s,a

A
2 !

! max max

e o e eod e o ‘ed

Off-policy v.(s)
0O 00 O

value iteration ; . .
g-value iteration Q-learning

Advice: carefully study these 1-step back-up diagrams, they provide a lot of insight/overview

Multi-step back-up diagrams

Can also extend the back-up over multiple-steps

Multi-step back-up diagrams

Temporal-
difference
learning O

depth
(length)
of update

Monte
Carlo (?

.q—. see

width

—
of update Dynamic
/0\ programming

O OO0 O

Multi-step back-up diagrams

Sample Expected
] width .
Temporal- ? e Dynamic
difference /0\ programming

learning O FROO O

depth
(length)
of update

] ./O\ Exhaustive
Monte] F f

Carlo (3

.

.4—. e

Multi-step back-up diagrams

Sample Expected
ofvlvji;()jctlgte D .
Temporal- ? ynamic
Shallow difference ¢ A, Programming

(1-step) learning O o ‘oloe)

depth
(length)
of update

\/
i \ '/O\f Exhaustive
Monte k Kt . search
Deep Carlo (? o fD\".

.

.q—-. see

Multi-step back-up diagrams

Sample Expected
width N
of update Dyn amic
Temporal- .
Shallow difference ? ‘ /(O\/.\ programming
(1-step) learning O o ‘oloe)
TD learning:
small width,
depth small depth
(length)
of update
\/
i ! '/O\f Exhaustive
hante " 4 . search
Deep Carlo (? i x.

.

.4—. e

Multi-step back-up diagrams

Shallow
(1-step)

Deep

Sample Expected
ofvlvji:ctigte D .
Temporal- ynamic
difference] /0\ programming
learning O FROO O
Exhaustive
search:
depth full Width,
length
S exi full depth
\/

- ./O\ Exhaustive
Monte 1 2
Carlo (? -

.4—. e

Multi-step back-up diagrams

Sample Expected
width
Temporal- e Dynamic -
Shallow difference A, Programming
(1-step) learning O o ‘oloe)
DP:
full width,
depth small depth
(length)
of update
\/
i ! '/O\f Exhaustive
Momts " . . search
Deep Carlo (? . m

.

.4—. e

Multi-step back-up diagrams

Shallow
(1-step)

Deep

Sample Expected
ofvlvji:ctigte .
Temporal- ? Dynamic .
difference] /0\ programming
learning O FROO O
MC RL:
small width, full
depth

Carlo (?
[J

.4—. e

Multi-step back-up diagrams

Shallow
(1-step)

Sample Expected
ofvlvji:ctigte Dvnamic
Temporal- ? y .
difference) /0\ programming

learning O LROO O

Whole spectrum of
width/depth back-up

combinations
depth

(length)
of update

Again, carefully study,
much insight!

. ./O\ Exhaustive
Monte 1 A b8
Carlo (? o

.

.q—. see

Summary 3: Types of back-ups

Back-up diagrams can provide much intuition about the space of possible back-ups

Summary 3: Types of back-ups

Back-up diagrams can provide much intuition about the space of possible back-ups

Essentially four considerations:

1) The width over the actions: sample (shallow) or expected (broad)

2) The back-up policy: on-policy or off-policy

3) The width over the dynamics: sample (shallow) or expected (broad)

4) The depth of the back-up: 1-step (shallow) or full depth (deep)

Summary 3: Types of back-ups

Back-up diagrams can provide much intuition about the space of possible back-ups

Essentially four considerations:

1) The width over the actions: sample (shallow) or expected (broad) -
?
2) The back-up policy: on-policy or off-policy R
QS
3) The width over the dynamics: sample (shallow) or expected (broad) A
Sarsa

4) The depth of the back-up: 1-step (shallow) or full depth (deep)

Question: can you indicate each decision for plain SARSA?

Summary 3: Types of back-ups

Back-up diagrams can provide much intuition about the space of possible back-ups

Essentially four considerations:

1) The width over the actions: sample (shallow) or expected (broad) -
?
2) The back-up policy: on-policy or off-policy R
QS
3) The width over the dynamics: sample (shallow) or expected (broad) A
Sarsa

4) The depth of the back-up: 1-step (shallow) or full depth (deep)

Question: can you indicate each decision for plain SARSA?

Break

4) Model-based reinforcement learning

Model-based Reinforcement Learning

Interaction with the real world is typically irreversible.

Q: How could we still obtain a model of how the world works?

Model-based Reinforcement Learning

When the environment is irreversible, maybe we can still

learn a reversible model from data

Inspired by the way humans acquire
(reversible) dynamics models:

we learn them from real-world
(irreversible) experience

Model-based Reinforcement Learning

value/policy

acting
direct
RL

experience

Model-based Reinforcement Learning

Model-free RL

value/policy (e.g, Q-learning)

acting
direct
RL

experience

value/policy

acting
direct

RL
model experience
p(s'lsa) (s.5)

f(s,a,s’)
model
learning

value/policy

acting
planning direct
RL
model experience
Model-based RL model
(e.g, Dyna) learning

Main benefit:

value/policy
Potentially more
data efficient
acting
planning direct
RL
model experience
Model-based RL model

learning

(e.g., Dyna)

Model-based Reinforcement Learning

Two important steps:

1. How tolearn a model from data? (Sec. 5)

2. How to integrate planning updates and learning updates? (Sec. 6)

5) Learning a model

Learning a model

Main question:

Given a dataset of observed transitions (s,a,r,s’), how can we estimate
1) the dynamics p(s’|s,a) and

2) The reward r(s,a,s’) function?

Learning a model

Main question:

Given a dataset of observed transitions (s,a,r,s’), how can we estimate
1) the dynamics p(s’|s,a) and

2) The reward r(s,a,s’) function?

Dynamics estimation

1. Track counts n(s,a,s’)
a. Number of times we observed s’ after taking a in s.

Dynamics estimation

1. Track counts n(s,a,s’)
a. Number of times we observed s’ after taking a in s.
b. Can estimate from transition data (s,a,r;,s’)

Dynamics estimation

1. Track counts n(s,a,s’)
a. Number of times we observed s’ after taking a in s.
b. Can estimate from transition data (s,a,r;,s’)
c. Array of size |S| x |A| x [S]

Dynamics estimation

1. Track counts n(s,a,s’)
a. Number of times we observed s’ after taking a in s.
b. Can estimate from transition data (s,a,r;,s’)
c. Array of size |S| x |A| x [S]

2. Estimate p(s’|s,a) by normalizing the observed counts:

n(s,a,s’)

13(3 |37a) — n(s’a)

Dynamics estimation

1. Track counts n(s,a,s’)
a. Number of times we observed s’ after taking a in s.
b. Can estimate from transition data (s,a,r;s’)
c. Array of size |S| x |A| x [S]

2. Estimate p(s’|s,a) by normalizing the observed counts:

Number of times we observed s’ after s,a

/

n(s,a,s’)

13(3 |S>a) — n(s,a)

™

Total number of trials at s,a

Dynamics estimation

1. Track counts n(s,a,s’)
a. Number of times we observed s’ after taking a in s.
b. Can estimate from transition data (s,a,r;s’)
c. Array of size |S| x |A| x [S]

2. Estimate p(s’|s,a) by normalizing the observed counts:

Number of times we observed s’ after s,a

/

R n(s,a,s’) n(s,a,s’)
p(s']s,a) = = ,
n(s,a) Yoo n(s,a,s)

™

Total number of trials at s,a

Dynamics estimation

Example: After taking a=1 in s=1, we have stored the following counts:
e n(s=l,a=1,s=1)=4
e n(s=l,a=1,=2)=2
e n(s=1,a=1,=3)=6

Dynamics estimation

Example: After taking a=1 in s=1, we have stored the following counts:
e n(s=l,a=1,s=1)=4
e n(s=l,a=1,=2)=2
e n(s=1,a=1,s'=3)=6

/
Q: Compute p(s’|s=1,a=1) p(s']s, a) = n(s,a,s’)

n(s,a)

Dynamics estimation

Example: After taking a=1 in s=1, we have stored the following counts:
e n(s=l,a=1,s=1)=4
e n(s=l,a=1,=2)=2
e n(s=1,a=1,s'=3)=6

/
Q: Compute p(s’|s=1,a=1) p(s']s, a) = n(s,a,s’)

n(s,a)

o p(s'=li|s=1l,a=1)=4/12="
o p(s'=2|s=1la=1)=2/12="%
o p(s'=3|s=1,a=1)=6/12="

Learning a model

Main question:

Given a dataset of observed transitions (s,a,r,s’), how can we estimate
1) the dynamics p(s’|s,a) and

2) therewardr(s,a,s’) function?

Reward function estimation

1. Also track total transition rewards R_ _(s,a,s’)
a. Sum of all observed rewards when reaching s’ after taking a in s.

Reward function estimation

1. Also track total transition rewards R_ _(s,a,s’)
a. Sum of all observed rewards when reaching s’ after taking a in s.
b. Can estimate from transition data (s,a,r;,s’)
c. Array of size |S| x |A| x [S]

Reward function estimation

1. Also track total transition rewards R_ _(s,a,s’)
a. Sum of all observed rewards when reaching s’ after taking a in s.
b. Can estimate from transition data (s,a,r;,s’)
c. Array of size |S| x |A| x [S]

2. Estimate r(s,a,s’) by computing the average transition reward:

Rsum(sa a, S,)

)= s,0,9)
? ?

Reward function estimation

1. Also track total transition rewards R_ _(s,a,s’)
a. Sum of all observed rewards when reaching s’ after taking a in s.
b. Can estimate from transition data (s,a,r;s’)
c. Array of size |S| x |A| x [S]

2. Estimate r(s,a,s’) by computing the average transition reward:

Total observed reward

Rsum(sa a? S,)

n(s,a,s’)

~—

Number of transitions

r(s,a,s’) =

Model estimation pseudocode

Full pseudocode in the lecture notes

Model estimation pseudocode

Full pseudocode in the lecture notes

Algorithm 1: Tabular model update pseudo-code. PS = prioritized sweeping.

Input: Maximum number of timesteps 7.
Initialization: Initialize n(s,a,s’) = 0 and Rgym(s,a,8') =0 Vse S,ac A
repeat 7T times

Observe (s,a,r,s’) /* Observe new transition

n(s,a,s’) < n(s,a,s")+1 /* Update transition counts

Roum(s,a,8") < Roaum(s,a,8) +r /* Update reward sums

p(s|s,a) = % /* Estimate transition function

flo, 08" = % /* Estimate reward function

p(s,als’) = En(b;l?;sa)s') /* Reverse model (only for PS)
end |

Summary 5. Learning a model

Estimate tabular p(s’|s,a) and r(s,a,s’) from observed data tuples <s,a,r;.s’>

Summary 5. Learning a model

Estimate tabular p(s’|s,a) and r(s,a,s’) from observed data tuples <s,a,r;.s’>

1. Maintain counts n(s,a,s’) and total rewards R___(s,a,s’).
sum

Summary 5. Learning a model

Estimate tabular p(s’|s,a) and r(s,a,s’) from observed data tuples <s,a,r;.s’>

1. Maintain counts n(s,a,s’) and total rewards R___(s,a,s’).
sum

2. Compute transition model p(s’|s,a) from normalizing counts.

Summary 5. Learning a model

Estimate tabular p(s’|s,a) and r(s,a,s’) from observed data tuples <s,a,r;.s’>

1. Maintain counts n(s,a,s’) and total rewards R___(s,a,s’).
sum
2. Compute transition model p(s’|s,a) from normalizing counts.

3. Compute reward model r(s,a,s’) from averaging total rewards.

Summary 5. Learning a model

Estimate tabular p(s’|s,a) and r(s,a,s’) from observed data tuples <s,a,r;.s’>

1. Maintain counts n(s,a,s’) and total rewards R___(s,a,s’).
sum
2. Compute transition model p(s’|s,a) from normalizing counts.

3. Compute reward model r(s,a,s’) from averaging total rewards.

Next section: how may this model be useful?

6) Model-based RL algorithms

Model-based RL algorithms

We want to make use of the learned model!

(combine planning and learning)

Model-based RL algorithms

Discuss three algorithms:
a) Real-time Dynamic Programming (RTDP)
b) Dyna

c) Prioritized sweeping

Model-based RL algorithms

Discuss three algorithms:

a) Real-time Dynamic Programming (RTDP)

b) Dyna

c) Prioritized sweeping

a) Real-time Dynamic Programming

We already discussed Dynamic Programming (DP) in an earlier lecture

a) Real-time Dynamic Programming

We already discussed Dynamic Programming (DP) in an earlier lecture

- Classic bridging algorithm between planning and learning
- Sweep through the entire state space

- At each state update with Bellman optimality equation

- Guaranteed convergence

a) Real-time Dynamic Programming

We already discussed Dynamic Programming (DP) in an earlier lecture

- Classic bridging algorithm between planning and learning
- Sweep through the entire state space

- At each state update with Bellman optimality equation

- Guaranteed convergence

Main problem = curse of dimensionality

Real-time Dynamic Programming

Insight: many states are often not even reachable from the start

Real-time Dynamic Programming

Insight: many states are often not even reachable from the start

Irrelevant States:
unreachable from any start state

Start States under any optimal policy

Relevant States
reachable from some start state
under some optimal policy

Real-time Dynamic Programming

Insight: many states are often not even reachable from the start

Irrelevant States:
unreachable from any start state

Start States under any optimal policy

DP focuses its
effort on all states

Relevant States
reachable from some start state
under some optimal policy

Real-time Dynamic Programming

Insight: many states are often not even reachable from the start

Irrelevant States:
unreachable from any start state

Start States under any optimal policy

DP focuses its
effort on all states

Relevant States
reachable from some start state
under some optimal policy

We would prefer
to focus on the
reachable states

Real-time Dynamic Programming

Solution of real-time DP:

apply DP updates on traces sampled from the start

(All model-free RL approaches do this by definition,

since the access to the MDP is then irreversible)

Real-time Dynamic Programming

Value of
start state
under
greedy

policy

(3]
'

N

on-policy —
b:l ///’/
P
e 10,000 STATES
/
/
/
14 /
0 50,;)00 100',000 150j000 200',000

Computation time, in expected updates

Real-time Dynamic Programming

on-policy —
b: 1 _EpEE
/« DP updates are
31 » 5 uniform across
A state space
¥ R 10,000 STATES
Value of /
start state 21 /
under //
greedy /
policy '
/
0 L] L T 1
0 50.000 100,000 150,000 200.000

Computation time, in expected updates

Real-time Dynamic Programming

on-policy

DP updates are

uniform across
state space

10,000 STATES

Value of
start state
under
greedy
policy

(3]
L

In larger problems
updating on
trajectories from
the start is often
preferable

0 50.;)00 100:000 lSOtOOO 200',000
Computation time, in expected updates

Model-based RL algorithms

Discuss three algorithms:
a) Real-time Dynamic Programming (RTDP)
b) Dyna

c) Prioritized sweeping

Dyna

Main idea:
Learn a model to generate additional transition data,

apply standard update to these simulated transitions.

Dyna

£ 5

7 \
Policy/value functions

direct RL
update

real
experience

[Environmentj

Dyna

£ 5

7 \
Policy/value functions

\

direct RL
update

real
experience
Standard update
from observed
transition (s,a,;s’)

E.g. Q-learning

[Environment]

£ 5

7 \
Policy/value functions

planning update

direct RL simulated
|
experience
search
learning control
Model

[Environmentj

£ 5

7 \
Policy/value functions

planning update

direct RL simulated
“
experience
— search
Model

[Environmentj

learn model

£ 5

7 \
Policy/value functions

planning update

direct RL simulated
“
experience
— search
Model

[Environmentj

learn model

Use model to
sample new
(s,a,1ns’)

/ \ Standard update,
Poli/cy/value functions e.g. Q-learning

planning update

direct RL simulated
update experience
real)
experience Use model to
model search sample new
learning control (s,a,5s)
Model

[Environmentj

learn model

Dyna

Algorithm 2: Dyna Q-learning with e-greedy exploration.

Input: Number of planning updates K, exploration parameter € € (0, 1], learning rate

a € (0,1], discount parameter v € [0, 1], maximum number of timesteps 7.
Initialization: Initialize Q(s7 a) =0, n(s,a,s) =0, Rsum(s,a,s') =0 Vse S,ae A
fort =1..T do

S <— current state /* Reset when environment terminates */ _
@ ~. Tegreedy (@) /* Sample action */ (Q-learning)
r,s ~ p(r,s'|s,a) /* Simulate environment */
Q(s,a) < Q(s,a) + a-[r+v-max, Q(s',a’) — Q(s,a)] /* Update Q-table */
end

Dyna

Algorithm 2: Dyna Q-learning with e-greedy exploration.

Input: Number of planning updates K, exploration parameter € € (0, 1], learning rate

a € (0,1], discount parameter v € [0, 1], maximum number of timesteps 7.
Initialization: Initialize Q(s, a) =0, n(s,a,s) =0, Rsum(s,a,s') =0 Vse S,ae A
fort =1..T do

s < current state /* Reset when environment terminates */

@ ~. Tegreedy (@) /* Sample action */

r, s ~ p(r,s'|s,a) /* Simulate environment */

p(s’,r|s,a) « Update(s,a,r,s’) /* Update model (Alg. */) Learn model

Q(s, a) Q(s, a) + «-[r+ - maxg Q(s', a)— Q(s, a)] /* Update Q-table */

repeat K times
s - random previously observed state /* State to plan on */ Make_ k
a + previously taken action in state s /* Planning action */ planning
s',r~p(s',rls,a) /* Simulate model */ updates in
Q(s,a) « Q(s,a) +a- [r+~-maxy Q(s',a') — Q(s,a)] /* Update Q-table */ between

end every real

end Step

Dyna

Algorithm 2: Dyna Q-learning with e-greedy exploration.

Input: Number of planning updates K, exploration parameter € € (0, 1], learning rate

a € (0,1], discount parameter v € [0, 1], maximum number of timesteps 7.
Initialization: Initialize Q(s, a) =0, n(s,a,s) =0, Rsum(s,a,s') =0 Vse S,ae A
fort =1..T do

s < current state /* Reset when environment terminates */
@ ~. Tegreedy (@) /* Sample action */
r, s ~ p(r,s'|s,a) /* Simulate environment */
p(s’,r|s,a) « Update(s,a,r,s’) /* Update model (Alg. */
Q(s, a) Q(s, a) + «-[r+ - maxg Q(s', a)— Q(s, a)] /* Update Q-table */
repeat K times
s - random previously observed state /* State to plan on */
a < previously taken action in state s /* Planning action */
s,r~p(s',rls, a) /* Simulate model */
Q(s,a) « Q(s,a) +a- [r+~-maxy Q(s',a') — Q(s,a)] /* Update Q-table */
end
end

Algorithm you will implement in the assignment!

Dyna

Steps
per
episode

800+

600+

400

200+

0 planning steps

14

(direct RL only)

5 planning steps

50 planning steps

Episodes

actions

Dyna

WITHOUT PLANNING (7=0)

G

WITH PLANNING (n=50)

}

=T[4

f

f

1
;
f

s
—
—

f
}

—
——
—>
—>

Al

G
}
}
}
t

Model-based RL algorithms

Discuss three algorithms:
a) Real-time Dynamic Programming (RTDP)
b) Dyna

c) Prioritized sweeping

Prioritized sweeping

If the value estimate of a state changes a lot,

then the states that precede it should probably also be updated.

Prioritized sweeping

If the value estimate of a state changes a lot,

then the states that precede it should probably also be updated.

Main idea:

Use a backward/reverse model to identify states that likely need updating
(backwards search to spread information faster)

Prioritized sweeping

Prioritized sweeping

r Imagine we find a
new big reward

Prioritized sweeping

Standard one-step
update will only
back-up one step

Prioritized sweeping
Multistep updates
will propagate
further along the
trace

° o
/ 0O

Prioritized sweeping
Prioritized
sweeping
identifies states
that may also lead
to the new

.v: " information, and
prioritizes these

D for updating

Prioritized sweeping
Prioritized
sweeping
identifies states
that may also lead
to the new

.v: " information, and
prioritizes these

D for updating

Prioritized sweeping

Main idea: prioritize states that deserve an update & additional backward search

Prioritized sweeping

Main idea: prioritize states that deserve an update & additional backward search

- Maintain priority queue, with priority as the absolute TD error

p |r+v-maxy Q(s,a’) — Q(s, a)|

New Q-learning

. Current estimate
estimate

Prioritized sweeping

Algorithm 3: Prioritized sweeping (Q-learning with e-greedy exploration).

Input: Number of planning updates K, exploration parameter € € (0, 1], learning rate

a € (0,1], discount parameter v € [0, 1], maximum number of timesteps 7T,

priority threshold 6.

Initialization: Initialize Q(s, a) =0, n(s,a,s) =0, Reum(s,a,8) =0 Vse€S,acA,

and prioritized queue PQ.

fort=1..T do
s < current state /* Reset when environment terminates
@ ~ Tegreedy (@]$) /* Sample action
r,s" ~p(r,s'|s,a) /* Simulate environment
p(s’,r|s,a) « Update(s,a,r,s’) /* Update model (Alg.
p < |r+~-maxy Q(s',a') — Q(s,a)| /* Compute priority p
if p> 0 then
| Insert (s,a) into PQ with priority p /* State-action needs update
end

/// Start sampling from PQ to perform updates
repeat K times

/// Loop over all state action that may lead to state s
for all (s,a) with p(s,als) >0 do

7 ="7(5,a,s) /* Get reward from model
p < |[F+~ max, Q(s,a) — Q(5,a)| /* Compute priority p
if p> 6 then
| Insert (s,a) into PQ with priority p /* State-action needs update
end
end
end
end

s,a < pop highest priority from PQ /* Sample P(), break when empty
s’ ~p(s’,r|s,a) /* Simulate model

Q(s,a) « Q(s,a) + a- [r+~ -maxy Q(s',a’) — Q(s,a)] /* Update Q-table

*/
*/
*/
*/
*/

*/

*/
*/

*/
*/

*/

Pseudocode in
assignment/lecture
notes

Pseudocode in

prioritized S\X/eepi ﬂg assignment/lecture

notes
Algorithm 3: Prioritized sweeping (Q-learning with e-greedy exploration).
Input: Number of planning updates K, exploration parameter € € (0, 1], learning rate
a € (0,1], discount parameter v € [0, 1], maximum number of timesteps 7',
priority threshold 6.
Initialization: Initialize Q(s, a) =0, n(s,a,s) =0, Reum(s,a,8) =0 Vse€S,acA, . .
and prioritized queue PQ. ¢ Malntaln da queue
fort=1..T do
s <— current state /* Reset when environment terminates */
@ ~ Tegreedy (@]$) /* Sample action */
r,s' ~ p(r,s'ls, a) /* Simulate environment */
p(s',r|s,a) « Update(s,a,r,s’) /* Update model (Alg. */
p < |r+~-maxy Q(s',a') — Q(s,a)| /* Compute priority p */
if p> 0 then
| Insert (s,a) into PQ with priority p /* State-action needs update */
end

/// Start sampling from PQ to perform updates

repeat K times

s,a < pop highest priority from PQ /* Sample P(), break when empty */
s’ ~p(s’,r|s,a) /* Simulate model */
Q(s,a) « Q(s,a) + a- [r+~ -maxy Q(s',a’) — Q(s,a)] /* Update Q-table */
/// Loop over all state action that may lead to state s

for all (s,a) with p(s,als) >0 do

7 =17(8,a,s) /* Get reward from model */
p < |[F+~ max, Q(s,a) — Q(5,a)| /* Compute priority p */
if p> 6 then
| Insert (s,a) into PQ with priority p /* State-action needs update */
end
end
end
end

Pseudocode in

PriOI’itized S\X/eepi ﬂg assignment/lecture

notes
Algorithm 3: Prioritized sweeping (Q-learning with e-greedy exploration).
Input: Number of planning updates K, exploration parameter € € (0, 1], learning rate
a € (0,1], discount parameter v € [0, 1], maximum number of timesteps 7',
priority threshold 6.
Initialization: Initialize Q(s, a) =0, n(s,a,s) =0, Reum(s,a,8) =0 Vse€S,acA, . .
and prioritized queue PQ. ¢ Malntaln da queue
for t =1..T do
s <— current state /* Reset when environment terminates */
a4 ~ Tegreedy (@]s) /* Sample action */
r,s' ~ p(r,s'ls, a) /* Simulate environme'glt */ LeaI‘n d forward and
p(s',7|s,a) < Update(s,a,r,s') <mm T OO L BRI 1] =
A o e e backward model
p < |r+7 maxe Q(s',a") — Q(s,a)| /* Compute priority p */
if p> 0 then
| Insert (s,a) into PQ with priority p /* State-action needs update */
end

/// Start sampling from PQ to perform updates

repeat K times

s,a < pop highest priority from PQ /* Sample P(), break when empty */
s’ ~p(s’,r|s,a) /* Simulate model */
Q(s,a) <« Q(s,a) + a-[r+~ -maxy Q(s',a’) — Q(s,a)] /* Update Q-table */
/// Loop over all state action that may lead to state s

for all (s,a) with p(s,als) >0 do

T =7(5,a,s) /* Get reward from model */
p « |[F+7 -max,Q(s,a) — Q(5,a)| /* Compute priority p */
if p> 0 then
| Insert (s,a) into PQ with priority p /* State-action needs update */
end
end
end
end

Pseudocode in

PriOI’itized S\X/eepi ﬂg assignment/lecture

notes
Algorithm 3: Prioritized sweeping (Q-learning with e-greedy exploration).
Input: Number of planning updates K, exploration parameter € € (0, 1], learning rate
a € (0,1], discount parameter v € [0, 1], maximum number of timesteps 7',
priority threshold 6.
Initialization: Initialize Q(s,a) =0,n(s,a,s") =0, Reum(s,a,5') =0 Vse€S,acA, . .
and prioritized queue PQ. ¢ Malntaln da queue
fort=1..T do
s <— current state /* Reset when environment terminates */
@ ~ Tegreedy (@]$) /* Sample action */
r,s' ~ p(r,s'ls, a) /* Simulate environment */ LeaI‘n d forward and
p(s',r|s,a) « Update(s,a,r,s") < Vg vio T ar- a1l t=R uug.E}) %7 b k d d l
p < |r 4+~ maxqy Q(s',a’') — Q(s,a)| /* Compute priority p */ aCkward mode
if p> 0 then
| Insert (s,a) into PQ with priority p /* State-ac */
end
/// Start sampling from PQ to perform updates Add to queue based
repeat K times
s,a < pop highest priority from PQ /* Sample P(), break when empty */ on abSOlute error
s’ ~p(s’,r|s,a) /* Simulate model */

Q(s,a) <« Q(s,a) + a-[r+~ -maxy Q(s',a’) — Q(s,a)] /* Update Q-table */
/// Loop over all state action that may lead to state s
for all (s,a) with p(s,als) >0 do

T =7(5,a,s) /* Get reward from model */
p « |[F+7 -max,Q(s,a) — Q(5,a)| /* Compute priority p */
if p> 0 then
| Insert (s,a) into PQ with priority p /* State-action needs update */
end
end
end
end

Pseudocode in

PriOI’itized S\X/eepi ﬂg assignment/lecture

notes
Algorithm 3: Prioritized sweeping (Q-learning with e-greedy exploration).
Input: Number of planning updates K, exploration parameter € € (0, 1], learning rate
a € (0,1], discount parameter v € [0, 1], maximum number of timesteps 7',
priority threshold 6.
Initialization: Initialize Q(s,a) = 0, n(s,a,s’) = 0, Rsum(s,a,8') =0 Vse S,a€ A, . .
and prioritized queue PQ. ¢ Malntaln da queue
for t =1..T do
s <— current state /* Reset when environment terminates */
@ ~ Tegreedy (@]$) /* Sample action */
i o | gt /% Simulate environment */ Learn a forward and
p(s',r|s,a) « Update(s,a,r,s") < 7r—UpUaTe Moae T (AIZ (1) ¥/
p < |r 4+~ maxqy Q(s',a’') — Q(s,a)| /* Compute priority p */ baCkward mOdel
if p> 0 then
| Insert (s,a) into PQ with priority p /* State-ac */
end
/// Start sampling from PQ to perform updates Add to queue based
t K ti
frpeal,h Mmos on absolute error

s,a < pop highest priority from PQ le P(@), break when empty */
s’ ~p(s’,r|s,a) igulate model */
Q(s,a) < Q(s,a) + o~ [r+~ -maxy Q(s',a’) — Q(s,a)] /* Update Q-ta
/// Loop over all state action that may lead to state s

for all (s,a) with p(s,als) >0 do

Pop from queue

T =7(5,a,s) /* Get reward from model */
p « |[F+7 -max,Q(s,a) — Q(5,a)| /* Compute priority p */
if p> 0 then
| Insert (s,a) into PQ with priority p /* State-action needs update */
end
end
end
end

Pseudocode in

assignment/lecture
notes
Algorithm 3: Prioritized sweeping (Q-learning with e-greedy exploration).
Input: Number of planning updates K, exploration parameter € € (0, 1], learning rate
a € (0,1], discount parameter v € [0, 1], maximum number of timesteps 7',
priority threshold 6.
Initialization: Initialize Q(s,a) = 0, n(s,a,s’) = 0, Rsum(s,a,8') =0 Vse S,a€ A, . .
and prioritized queue PQ. ¢ Malntaln da queue
for t =1..T do
s <— current state /* Reset when environment terminates */
@ ~ Tegreedy (@]$) /* Sample action */
r,s' ~ p(r, |5, a) /% Simulate environment */ Learn a forward and
p(s',r|s,a) « Update(s,a,r,s") < PO Te MO0 T AL |I] ¥/
: ~ o backward model

p < |r+v maxy Q(s',a’) — Q(s,a)| /* Compute priority p */
if p> 0 then

| Insert (s,a) into PQ with priority p

*/

/* State-ac

end
/// Start sampling from PQ to perform updates Add to queue based
bt on absolute error

s,a < pop highest priority from PQ le P(@), break when empty */

s’ ~p(s’,r|s,a) ipulate model */

Q(s,a) < Q(s,a) + o [r+~ -maxy Q(s',a’) — Q(s,a)] /* Update Q-ta

/// Loop over all state action that may lead to stat®"

for all (s,a) with p(s,als) >0 do
7 =17(8,a,s) /* Get reward from mode

Pop from queue

p « |[F+~-max, Q(s,a) — Q(5,a)| /* Compute priority p */
if p> 0 then
| Insert (s,a) into PQ with priority p /* State-action needs update */
end
end

end

Update Q table

end

Pseudocode in

assignment/lecture
notes
Algorithm 3: Prioritized sweeping (Q-learning with e-greedy exploration).
Input: Number of planning updates K, exploration parameter € € (0, 1], learning rate
a € (0,1], discount parameter v € [0, 1], maximum number of timesteps 7',
priority threshold 6.
Initialization: Initialize Q(s,a) = 0, n(s,a,s’) = 0, Rsum(s,a,8') =0 Vse S,a€ A, . .
and prioritized queue PQ. ¢ Malntaln da queue
for t =1..T do
§ « current state /* Reset when environment terminates */
@ ~ Tegreedy (@]$) /* Sample action */
r,s' ~ p(r, |5, a) /% Simulate environment */ Learn a forward and
p(s',r|s,a) « Update(s,a,r,s") < PO Te MO0 T AL |I] ¥/
: A o backward model

p < |r+v maxy Q(s',a’) — Q(s,a)| /* Compute priority p */
if p> 0 then
| Insert (s,a) into PQ with priority p
end

/// Start sampling from PQ to perform updates

*/

/* State-ac

s,a < pop highest priority from PQ le P(@), break when empty */

s’ ~p(s’,r|s,a) ipulate model */

Q(s,a) < Q(s,a) + o [r+~ -maxy Q(s',a’) — Q(s,a)] /* Update Q-ta

/// Loop over all state action that may lead to stat®"

for all (s,a) with p(s,als) >0 do
T =7(5,a,s) /* Get reward from mode

p « |[F+~-max, Q(s,a) — Q(5,a)| /* Compute priority p */
if p> 0 then
| Insert (s,a) into PQ with priority p /* Sta& ction needs update */
end
end

end

end

queue

Add to queue based
repeat K times on absolute error

Pop from queue

Update Q table

Loop all precursors,
potentially add to

Prioritized sweeping

Algorithm 3: Prioritized sweeping (Q-learning with e-greedy exploration).

Input: Number of planning updates K, exploration parameter € € (0, 1], learning rate
a € (0,1], discount parameter v € [0, 1], maximum number of timesteps 7',
priority threshold 6.

Initialization: Initialize Q(s, a) =0, n(s,a,s) =0, Reum(s,a,8) =0 Vse€S,acA,

and prioritized queue PQ.

fort=1..T do
s < current state /* Reset when environment terminates */
@ ~ Tegreedy (@]$) /* Sample action */ .
r,s" ~p(r,s'|s,a) /* Simulate environmeit */ You Wlll alSO
p(s’,r|s,a) « Update(s,a,r,s’) /* Update model (Alg. */ . .
p < |r+~-maxy Q(s',a') — Q(s,a)| /* Compute priority p */ lmplement thlS
if p>§ then algorithm for the
| Insert (s,a) into PQ with priority p /* State-action needs update */ .
end assignment!

/// Start sampling from PQ to perform updates

repeat K times

s,a < pop highest priority from PQ /* Sample P(), break when empty */
s’ ~p(s’,r|s,a) /* Simulate model */
Q(s,a) « Q(s,a) + a- [r+~ -maxy Q(s',a’) — Q(s,a)] /* Update Q-table */
/// Loop over all state action that may lead to state s

for all (s,a) with p(s,als) >0 do

T =T7(5,a,s) /* Get reward from model */
p < |[F+~ max, Q(s,a) — Q(5,a)| /* Compute priority p */
if p> 6 then
| Insert (s,a) into PQ with priority p /* State-action needs update */
end
end
end
end

Prioritized sweeping

107_

106_

105_
Updates
until . Prioritized
optimal sweeping
solution p3-

102_

10

| | | | | | | [
0 47 94 186 376 752 1504 3008 6016

Gridworld size (#states)

Summary 6. Model-based RL algorithms

Planning and learning can be combined in a variety of ways

Summary 6. Model-based RL algorithms

Planning and learning can be combined in a variety of ways

- E.g, Dyna
- Learn forward model

- Use model to sample additional transition data
- Apply standard model-free RL update to simulated experience as well.

Summary 6. Model-based RL algorithms

Planning and learning can be combined in a variety of ways

- E.g, Dyna
- Learn forward model
- Use model to sample additional transition data

- Apply standard model-free RL update to simulated experience as well.

- E.g., Prioritized sweeping
- Learn a backward model
- Use backward model to identify states that will likely change on the next
update
- Prioritize these states for updating in a separate queue

To Do

Reinforcement |
Learning //
foiin | /

Read

- Sutton and Barto, Chapter 8
- Lecture notes
- Take care to study the back-up diagrams and associated equations!

«/‘
To Do I\
Reinforcement | I\

Learning //
|

An Introduction / / \
second edition

Richard S. Sutton and Andrew G. Barto / </ 4 \
/i X

Read

- Sutton and Barto, Chapter 8
- Lecture notes
- Take care to study the back-up diagrams and associated equations!

Assignment:
107
1. Implement two MBRL algorithms:
106 Dyna-Q
a. Dyna
L L] L . 105_
b. Prioritized sweeping o
until 104 Prioritized
optimal sweeping
solution ;34

2. Investigate their performance

1024

10 T T T T T T |
0 47 94 186 376 752 1504 3008 6016

3. Write a report Gridworld size (#states)

Questions?

