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1) Access to the MDP dynamics
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- Reversible access 
- We can take try any action in any state we want
- Similar to planning in our head
- Call such access a model 
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- Reversible access 
- We can take try any action in any state we want
- Similar to planning in our head
- Call such access a model 

- Irreversible access
- When we take an action, we have to continue 

from the next state
- Similar to the real world
- Call such access an environment 

Access to the environment dynamics
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Dynamics function: p(s’|s,a)

Which next state s can we observe after taking action a in state s

Two important considerations:

1) Is our access reversible or irreversible? (model versus environment) 

2) Do we get the full distribution of p(s’|s,a), or a sample? 

p(s’=1) = 0.1 s’ = 3! (this time)

p(s’=2) = 0.2

p(s’=3) = 0.7
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Dynamics function: p(s’|s,a)

Which next state s can we observe after taking action a in state s

Two important considerations:

1) Is our access reversible or irreversible? (model versus environment) 

2) Do we get the full distribution of p(s’|s,a), or a sample? 

p(s’=1) = 0.1 s’ = 3! (this time)

p(s’=2) = 0.2

p(s’=3) = 0.7

Access to the MDP dynamics

Next page: 2-by-2 overview of these considerations
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Access to the MDP dynamics

White 
nodes are 

states, 
black 

nodes are 
actions



Access to the MDP dynamics

‘Model’



Access to the MDP dynamics

Exact 
probability 

of each 
next state

/distribution



Access to the MDP dynamics

Only 
sample, but 
repeatedly



Access to the MDP dynamics

‘Environment’



Access to the MDP dynamics

Only 
sample 

once, then 
continue



Access to the MDP dynamics

In practice 
does not 

occur



1. Reversible versus irreversible access

2. Distributional versus sample models

Summary 1: Access to MDP dynamics



2) Difference between planning and learning



Planning Reinforcement learning

Planning versus learning
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Planning Reinforcement learning
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Planning Reinforcement learning

Planning versus learning

Both can solve 
the same MDP 
optimization 

problem



So what discriminates planning from reinforcement learning?
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So what discriminates planning from reinforcement learning?

Two factors:

1) Access to the MDP dynamics: reversible or irreversible 

2) Storage of the solution: local or global 

Planning versus learning



Question: can you guess what the difference between a local and global solution 
might be? 

Local versus global solution



- A local solution temporarily stores a solution for a 
subset of all states

- focus on current state
- discarded after execution
- e.g., a planning tree
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- A local solution temporarily stores a solution for a 
subset of all states

- focus on current state
- discarded after execution
- e.g., a planning tree

- A global solution permanently stores estimates for 
all states

- e.g., a value table
- only option in (model-free) RL, because we 

have to move forward and do not know when 
we get back to a state

Local versus global solution



Problem: we have two possible distinctions

Planning versus learning



Problem: we have two possible distinctions

Planning versus learning

Local solution Global solution

Reversible MDP 
access

Irreversible 
MDP access



Problem: we have two possible distinctions

Planning versus learning

Local solution Global solution

Reversible MDP 
access

Planning
e.g., MCTS

Irreversible 
MDP access



Problem: we have two possible distinctions

Planning versus learning

Local solution Global solution

Reversible MDP 
access

Planning
e.g., MCTS

Irreversible 
MDP access

Model-free RL
e.g., Q-learning



Problem: we have two possible distinctions

Planning versus learning

Local solution Global solution

Reversible MDP 
access

Planning
e.g., MCTS

Borderline/Model-based RL
e.g., Dynamic Programming

Irreversible 
MDP access

Model-free RL
e.g., Q-learning



Problem: we have two possible distinctions

Planning versus learning

Local solution Global solution

Reversible MDP 
access

Planning
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e.g., Dynamic Programming

Irreversible 
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e.g., Q-learning

Q: Why is it impossible to use a local solution when we have irreversible access?



Problem: we have two possible distinctions

Planning versus learning

Local solution Global solution

Reversible MDP 
access

Planning
e.g., MCTS

Borderline/Model-based RL
e.g., Dynamic Programming

Irreversible 
MDP access

(impossible) Model-free RL
e.g., Q-learning

Q: Why is it impossible to use a local solution when we have irreversible access?
A: Local solutions get discarded after execution of the real action, but if the environment 
is irreversible, we directly throw away our new solution after the first sample. 



1. Planning: reversible model + local solution

2. Model-free RL: irreversible model + global solution

3. Borderline/model-based RL: reversible model + global solution

Summary 2: Planning versus learning



3) Comparison of back-ups



Our access to the MDP dynamics also influences the way we can back-up information!

Expected versus sample back-ups



Our access to the MDP dynamics also influences the way we can back-up information!
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Our access to the MDP dynamics also influences the way we can back-up information!

Need to distinguish:

- Expected back-ups (mostly planning)

- Sample back-ups (mostly RL)

We will illustrate this difference with back-up diagrams

Expected versus sample back-ups
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A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Bellman equation 

Back-up diagrams

States are circles, 

actions are dots



A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Bellman equation 

Back-up diagrams

To compute a new 
estimate of V(s)



A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Bellman equation 

Back-up diagrams

We sum over all actions



A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Bellman equation 

Back-up diagrams

For each action we sum 
over all possible next 

states



A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Bellman equation 

Back-up diagrams

And for each possibility 
back-up the reward plus 
gamma times the next 

value V(s’)



A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Bellman equation 

Back-up diagrams

= full expectation over 
the actions (policy) and 
next states (dynamics)



A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Temporal Difference Learning
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A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Temporal Difference Learning

Back-up diagrams

To compute a new 
estimate of V(s)



A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Temporal Difference Learning

Back-up diagrams

We sample a single action



A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Temporal Difference Learning

Back-up diagrams

For this action sample 
a next state s’



A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Temporal Difference Learning

Back-up diagrams

And back-up r + γ * V(s’)



A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Temporal Difference Learning

Back-up diagrams

This is a sample back-up over 
the actions (policy) and next 

states (dynamics)



A back-up diagram graphically represents a one-step back-up equation

Back-up diagram for the Temporal Difference Learning

Back-up diagrams

This is a sample back-up over 
the actions (policy) and next 

states (dynamics)

Sample estimates will converge 
to the correct equation over 
multiple updates/samples



Spectrum of possible 1-step back-ups
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Spectrum of possible 1-step back-ups
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Spectrum of possible 1-step back-ups

State values V(s)

On-policy

Sample

Off-policy

Expected



Spectrum of possible 1-step back-ups

State values V(s) State-action values Q(s,a)

On-policy

Sample SampleExpected

Off-policy

Expected



Spectrum of possible 1-step back-ups

State values V(s) State-action values Q(s,a)

On-policy

Sample SampleExpected

Off-policy

Expected

Q: Categorize Q-learning. 



Spectrum of possible 1-step back-ups

On-policy

Sample SampleExpected

Off-policy

Expected

State values V(s) State-action values Q(s,a)



Spectrum of possible 1-step back-ups

Advice: carefully study these 1-step back-up diagrams, they provide a lot of insight/overview

On-policy

Sample SampleExpected

Off-policy

Expected



Multi-step back-up diagrams

Can also extend the back-up over multiple-steps



Multi-step back-up diagrams



Multi-step back-up diagrams

Sample Expected



Multi-step back-up diagrams

Sample Expected

Shallow 
(1-step)

Deep



Multi-step back-up diagrams

Sample Expected

Shallow 
(1-step)

Deep

TD learning: 
small width, 
small depth



Multi-step back-up diagrams

Sample Expected

Shallow 
(1-step)

Deep

Exhaustive 
search: 

full width, 
full depth



Multi-step back-up diagrams

Sample Expected

Shallow 
(1-step)

Deep

DP: 
full width, 

small depth



Multi-step back-up diagrams

Sample Expected

Shallow 
(1-step)

Deep

MC RL: 
small width, full 

depth



Multi-step back-up diagrams

Sample Expected

Shallow 
(1-step)

Whole spectrum of 
width/depth back-up 

combinations

Again, carefully study, 
much insight!



Back-up diagrams can provide much intuition about the space of possible back-ups

Summary 3: Types of back-ups



Back-up diagrams can provide much intuition about the space of possible back-ups

Essentially four considerations: 

1) The width over the actions: sample (shallow) or expected (broad)

2) The back-up policy: on-policy or off-policy

3) The width over the dynamics: sample (shallow) or expected (broad)

4) The depth of the back-up: 1-step (shallow) or full depth (deep)
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2) The back-up policy: on-policy or off-policy

3) The width over the dynamics: sample (shallow) or expected (broad)

4) The depth of the back-up: 1-step (shallow) or full depth (deep)

Question: can you indicate each decision for plain SARSA?
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Back-up diagrams can provide much intuition about the space of possible back-ups

Essentially four considerations: 

1) The width over the actions: sample (shallow) or expected (broad)

2) The back-up policy: on-policy or off-policy

3) The width over the dynamics: sample (shallow) or expected (broad)

4) The depth of the back-up: 1-step (shallow) or full depth (deep)

Question: can you indicate each decision for plain SARSA?

Summary 3: Types of back-ups



Break



4) Model-based reinforcement learning



Interaction with the real world is typically irreversible. 

Q: How could we still obtain a model of how the world works? 

Model-based Reinforcement Learning



When the environment is irreversible, maybe we can still 

learn a reversible model from data

Model-based Reinforcement Learning

Inspired by the way humans acquire 
(reversible) dynamics models: 

we learn them from real-world 
(irreversible) experience



Model-based Reinforcement Learning



Model-based Reinforcement Learning

Model-free RL

(e.g., Q-learning)



Model-based Reinforcement Learning

(s,a,r,s’)
p̂(s’|s,a)

r̂(s,a,s’)



Model-based Reinforcement Learning

Model-based RL

(e.g., Dyna)



Model-based Reinforcement Learning

Model-based RL

(e.g., Dyna)

Main benefit:

Potentially more 
data efficient



Model-based Reinforcement Learning

Two important steps:

1. How to learn a model from data? (Sec. 5)

2. How to integrate planning updates and learning updates? (Sec. 6)



5) Learning a model



Main question:

Given a dataset of observed transitions (s,a,r,s’), how can we estimate 

1) the dynamics p(s’|s,a) and

 

2) The reward r(s,a,s’) function?
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a. Number of times we observed s’ after taking a in s.
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1. Track counts n(s,a,s’) 
a. Number of times we observed s’ after taking a in s.
b. Can estimate from transition data (s,a,r,s’)
c. Array of size |S| x |A| x |S| 

2. Estimate p(s’|s,a) by normalizing the observed counts:

Dynamics estimation

Number of times we observed s’ after s,a

Total number of trials at s,a



Example: After taking a=1 in s=1, we have stored the following counts: 

● n(s=1,a=1,s’=1) = 4 
● n(s=1,a=1,s’=2) = 2 
● n(s=1,a=1,s’=3) = 6 

Dynamics estimation



Example: After taking a=1 in s=1, we have stored the following counts: 

● n(s=1,a=1,s’=1) = 4 
● n(s=1,a=1,s’=2) = 2 
● n(s=1,a=1,s’=3) = 6 

Q: Compute p(s’|s=1,a=1) 
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Example: After taking a=1 in s=1, we have stored the following counts: 

● n(s=1,a=1,s’=1) = 4 
● n(s=1,a=1,s’=2) = 2 
● n(s=1,a=1,s’=3) = 6 

Q: Compute p(s’|s=1,a=1) 

A: 

● p(s’=1|s=1,a=1) = 4/12 = ⅓
● p(s’=2|s=1,a=1) = 2/12 = ⅙
● p(s’=3|s=1,a=1) = 6/12 = ½

Dynamics estimation



Main question:

Given a dataset of observed transitions (s,a,r,s’), how can we estimate 

1) the dynamics p(s’|s,a) and

 

2) the reward r(s,a,s’) function?

Learning a model



1. Also track total transition rewards R
sum

(s,a,s’) 
a. Sum of all observed rewards when reaching s’ after taking a in s. 

Reward function estimation
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b. Can estimate from transition data (s,a,r,s’)
c. Array of size |S| x |A| x |S| 

2. Estimate r(s,a,s’) by computing the average transition reward: 

Reward function estimation



1. Also track total transition rewards R
sum

(s,a,s’) 
a. Sum of all observed rewards when reaching s’ after taking a in s. 
b. Can estimate from transition data (s,a,r,s’)
c. Array of size |S| x |A| x |S| 

2. Estimate r(s,a,s’) by computing the average transition reward: 

Reward function estimation

Total observed reward

Number of transitions



Model estimation pseudocode

Full pseudocode in the lecture notes



Model estimation pseudocode

Full pseudocode in the lecture notes



Estimate tabular p(s’|s,a) and r(s,a,s’) from observed data tuples <s,a,r,s’>

Summary 5: Learning a model



Estimate tabular p(s’|s,a) and r(s,a,s’) from observed data tuples <s,a,r,s’>

1. Maintain counts n(s,a,s’) and total rewards R
sum

(s,a,s’).
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1. Maintain counts n(s,a,s’) and total rewards R
sum

(s,a,s’).

2. Compute transition model p(s’|s,a) from normalizing counts.

3. Compute reward model r(s,a,s’) from averaging total rewards.
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Estimate tabular p(s’|s,a) and r(s,a,s’) from observed data tuples <s,a,r,s’>

1. Maintain counts n(s,a,s’) and total rewards R
sum

(s,a,s’).

2. Compute transition model p(s’|s,a) from normalizing counts.

3. Compute reward model r(s,a,s’) from averaging total rewards.

Next section: how may this model be useful? 

Summary 5: Learning a model



6) Model-based RL algorithms



We want to make use of the learned model!

(combine planning and learning)

Model-based RL algorithms



Discuss three algorithms:

a) Real-time Dynamic Programming (RTDP)

b) Dyna

c) Prioritized sweeping

Model-based RL algorithms



Discuss three algorithms:

a) Real-time Dynamic Programming (RTDP)

b) Dyna

c) Prioritized sweeping

Model-based RL algorithms



We already discussed Dynamic Programming (DP) in an earlier lecture

a) Real-time Dynamic Programming



We already discussed Dynamic Programming (DP) in an earlier lecture

- Classic bridging algorithm between planning and learning
- Sweep through the entire state space
- At each state update with Bellman optimality equation
- Guaranteed convergence

a) Real-time Dynamic Programming



We already discussed Dynamic Programming (DP) in an earlier lecture

- Classic bridging algorithm between planning and learning
- Sweep through the entire state space
- At each state update with Bellman optimality equation
- Guaranteed convergence

Main problem = curse of dimensionality

a) Real-time Dynamic Programming



Insight: many states are often not even reachable from the start
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Insight: many states are often not even reachable from the start
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DP focuses its 
effort on all states



Insight: many states are often not even reachable from the start

Real-time Dynamic Programming

DP focuses its 
effort on all states

We would prefer 
to focus on the 

reachable states



Solution of real-time DP: 

apply DP updates on traces sampled from the start

(All model-free RL approaches do this by definition, 

since the access to the MDP is then irreversible) 

Real-time Dynamic Programming



Real-time Dynamic Programming



Real-time Dynamic Programming

DP updates are 
uniform across 

state space



Real-time Dynamic Programming

DP updates are 
uniform across 

state space

In larger problems 
updating on 

trajectories from 
the start is often 

preferable



Discuss three algorithms:

a) Real-time Dynamic Programming (RTDP)

b) Dyna

c) Prioritized sweeping

Model-based RL algorithms



Main idea: 

Learn a model to generate additional transition data, 

apply standard update to these simulated transitions.

Dyna



Dyna



Dyna

Standard update 
from observed 

transition (s,a,r,s’)

E.g. Q-learning



Dyna



Dyna

learn model



Dyna

Use model to 
sample new 

(s,a,r,s’)

learn model



Dyna

Standard update, 
e.g. Q-learning

Use model to 
sample new 

(s,a,r,s’)

learn model



Dyna

(Q-learning)



Dyna

Make k 
planning 

updates in 
between 

every real 
step

Learn model



Dyna

Algorithm you will implement in the assignment!



Dyna



Dyna



Discuss three algorithms:

a) Real-time Dynamic Programming (RTDP)

b) Dyna

c) Prioritized sweeping

Model-based RL algorithms



If the value estimate of a state changes a lot, 

then the states that precede it should probably also be updated. 

Prioritized sweeping



If the value estimate of a state changes a lot, 

then the states that precede it should probably also be updated. 

Main idea: 

Use a backward/reverse model to identify states that likely need updating
(backwards search to spread information faster)

Prioritized sweeping



Prioritized sweeping



Prioritized sweeping

Imagine we find a 
new big reward



Prioritized sweeping

Standard one-step 
update will only 
back-up one step



Prioritized sweeping
Multistep updates 

will propagate 
further along the 

trace



Prioritized sweeping
Prioritized 
sweeping 

identifies states 
that may also lead 

to the new 
information, and 
prioritizes these 

for updating



Prioritized sweeping
Prioritized 
sweeping 

identifies states 
that may also lead 

to the new 
information, and 
prioritizes these 

for updating



Main idea: prioritize states that deserve an update & additional backward search

Prioritized sweeping



Main idea: prioritize states that deserve an update & additional backward search

- Maintain priority queue, with priority as the absolute TD error

Prioritized sweeping

New Q-learning 
estimate

Current estimate



Prioritized sweeping
Pseudocode in 

assignment/lecture 
notes
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Prioritized sweeping
Pseudocode in 

assignment/lecture 
notes

Maintain a queue

Learn a forward and 
backward model

Pop from queue

Add to queue based 
on absolute error

Update Q table

Loop all precursors, 
potentially add to 

queue



Prioritized sweeping

You will also 
implement this 

algorithm for the 
assignment!



Prioritized sweeping



Planning and learning can be combined in a variety of ways

Summary 6: Model-based RL algorithms



Planning and learning can be combined in a variety of ways

- E.g., Dyna
- Learn forward model
- Use model to sample additional transition data
- Apply standard model-free RL update to simulated experience as well. 

Summary 6: Model-based RL algorithms



Planning and learning can be combined in a variety of ways

- E.g., Dyna
- Learn forward model
- Use model to sample additional transition data
- Apply standard model-free RL update to simulated experience as well. 

- E.g., Prioritized sweeping
- Learn a backward model
- Use backward model to identify states that will likely change on the next 

update
- Prioritize these states for updating in a separate queue

Summary 6: Model-based RL algorithms



Read

- Sutton and Barto, Chapter 8
- Lecture notes
- Take care to study the back-up diagrams and associated equations!

To Do



Read

- Sutton and Barto, Chapter 8
- Lecture notes
- Take care to study the back-up diagrams and associated equations!

Assignment:

1. Implement two MBRL algorithms:
a. Dyna
b. Prioritized sweeping

2. Investigate their performance

3. Write a report

To Do



Questions? 


