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1 Type of access to the MDP dynamics

When we are given an MDP problem, the type of access we get to the MDP dynamics may differ.
We need to consider: 1) whether our access is reversible or irreversible, and 2) whether we get
the full distribution, or only a sample.

1. Reversible (model) versus irreversible (environment) access:

� A model gives reversible access to the MDP dynamics p(s′|s, a). We can query it at
any state-action.

� An environment gives irreversible access to the MDP dynamics p(s′|s, a). After taking
an action, we have to move forward to the next state, and make our next query there.

2. Distribution versus sample model:

For models we additionally need to distinguish between:

� Distribution models, which upon querying provide the full probabilities in p(s′|s, a),

� Sample models, which upon querying only provide a single sample from p(s′|s, a).

For environments (irreversible access to the MDP dynamics), we in practice always get a
sample.

This leads to the following three types of access to the MDP dynamics:
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2 Planning versus Learning

Planning and learning can both be used to solve MDP problems. The boundary between both
is defined based on two characteristics:

� The type of access to the environment dynamics

– Planning has reversible access to the environment (i.e., a model).

– (Model-free) reinforcement learning has irreversible access (we need to continue to the
next state).

� The representation of the solution:

– Planning methods store a local solution, focusing all effort on the current state.

– Reinforcement learning methods store a global solution, for each possible state.

The combination of these two aspects leads to the following categorization:

Local solution Global solution

Reversible dynamics
(model)

Planning

e.g., MCTS

Borderline/
Model-based RL

e.g., DP

Irreversible dynamics
(environment)

- Model-free RL

e.g., Q-learning
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3 Tabular model learning

We may sample the environment to obtain transitions of the form 〈s, a, r, s′〉. Define the following
counts:

n(s, a, s′) Number of times we observed state s′ after taking
action a in state s

n(s, a) Number of times we took action a in state s

n(s) Number of times we observed state s

Rsum(s, a, s′) =
∑n(s,a,s′)
i=1 ri(s, a, s

′) Total sum of rewards obtained for transition s, a, s′

We can then easily estimate our dynamics model as

p̂(s′|s, a) =
n(s, a, s′)

n(s, a)
=

n(s, a, s′)∑
s′ n(s, a, s′)

and estimate our reward model as

r̂(s, a, s′) =
Rsum(s, a, s′)

n(s, a, s′)
.

In practice, we need to store two arrays, n(s, a, s′) and Rsum(s, a, s′), both of size |S|×|A|×|S|.
Algorithm 1 provides full details of tabular model estimation.

Inverse model In specific case, we may also be interested in the reverse model, a distribution
that specifies which states and actions have previously led to a specific next state:

p̂(s, a|s′) =
n(s, a, s′)

n(s′)
=

n(s, a, s′)∑
s,a n(s, a, s′)

Algorithm 1: Tabular model update pseudo-code. PS = prioritized sweeping.

Input: Maximum number of timesteps T .
Initialization: Initialize n(s, a, s′) = 0 and Rsum(s, a, s′) = 0 ∀s ∈ S, a ∈ A
repeat T times

Observe 〈s, a, r, s′〉 /* Observe new transition */

n(s, a, s′)← n(s, a, s′) + 1 /* Update transition counts */

Rsum(s, a, s′)← Rsum(s, a, s′) + r /* Update reward sums */

p̂(s′|s, a)← n(s,a,s′)∑
s′ n(s,a,s

′) /* Estimate transition function */

r̂(s, a, s′)← Rsum(s,a,s′)
n(s,a,s′) /* Estimate reward function */

p̂(s, a|s′)← n(s,a,s′)∑
s,a n(s,a,s

′) /* Reverse model (only for PS) */

end
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4 Dyna

Dyna is a specific model-based RL algorithms, in which we 1) learn a model (Algorithm 1), and
subsequently use this model to make additional one-step planning updates to our value function.
Algorithm 2 shows the Dyna approach for Q-learning with ε-greedy exploration.

Algorithm 2: Dyna Q-learning with ε-greedy exploration.

Input: Number of planning updates K, exploration parameter ε ∈ (0, 1], learning rate
α ∈ (0, 1], discount parameter γ ∈ [0, 1], maximum number of timesteps T .

Initialization: Initialize Q̂(s, a) = 0, n(s, a, s′) = 0, Rsum(s, a, s′) = 0 ∀s ∈ S, a ∈ A.
for t = 1...T do

s← current state /* Reset when environment terminates */

a ∼ πε-greedy(a|s) /* Sample action */

r, s′ ∼ p(r, s′|s, a) /* Simulate environment */

p̂(s′, r|s, a)← Update(s, a, r, s′) /* Update model (Alg.1) */

Q̂(s, a)← Q̂(s, a) + α · [r + γ ·maxa′ Q̂(s′, a′)− Q̂(s, a)] /* Update Q-table */

repeat K times
s← random previously observed state /* State to plan on */

a← previously taken action in state s /* Planning action */

s′, r ∼ p̂(s′, r|s, a) /* Simulate model */

Q̂(s, a)← Q̂(s, a) + α · [r + γ ·maxa′ Q̂(s′, a′)− Q̂(s, a)] /* Update Q-table */

end

end
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5 Prioritized Sweeping

The main insight of prioritized sweeping is that we may update our value function more efficiently,
by identifying which states are most promising for updating. When the Q̂(s, a) estimate of a
particular state-action changes a lot, then it is likely that the state-action that lead to state s
also likely need an update. A full algorithm is provided in Alg. 3

Algorithm 3: Prioritized sweeping (Q-learning with ε-greedy exploration).

Input: Number of planning updates K, exploration parameter ε ∈ (0, 1], learning rate
α ∈ (0, 1], discount parameter γ ∈ [0, 1], maximum number of timesteps T ,
priority threshold θ.

Initialization: Initialize Q̂(s, a) = 0, n(s, a, s′) = 0, Rsum(s, a, s′) = 0 ∀s ∈ S, a ∈ A,
and prioritized queue PQ.
for t = 1...T do

s← current state /* Reset when environment terminates */

a ∼ πε-greedy(a|s) /* Sample action */

r, s′ ∼ p(r, s′|s, a) /* Simulate environment */

p̂(s′, r|s, a)← Update(s, a, r, s′) /* Update model (Alg.1) */

p← |r + γ ·maxa′ Q̂(s′, a′)− Q̂(s, a)| /* Compute priority p */

if p> θ then
Insert (s, a) into PQ with priority p /* State-action needs update */

end
/// Start sampling from PQ to perform updates
repeat K times

s, a← pop highest priority from PQ /* Sample PQ, break when empty */

s′, r ∼ p̂(s′, r|s, a) /* Simulate model */

Q̂(s, a)← Q̂(s, a) + α · [r + γ ·maxa′ Q̂(s′, a′)− Q̂(s, a)] /* Update Q-table */

/// Loop over all state action that may lead to state s
for all (s̄, ā) with p̂(s̄, ā|s) > 0 do

r̄ = r̂(s̄, ā, s) /* Get reward from model */

p← |r̄ + γ ·maxa Q̂(s, a)− Q̂(s̄, ā)| /* Compute priority p */

if p> θ then
Insert (s, a) into PQ with priority p /* State-action needs update */

end

end

end

end
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