
Lecture Notes:

Bandits

Course: Reinforcement Learning,
Bachelor AI, Leiden University

Written by: Thomas Moerland

1 Definition

A bandit is defined by the tuple

〈A, p(r|a)〉,

where

� A is a set of discrete actions (‘arms’).

� p(r|a) is a conditional probability distribution, mapping each action to a
distribution over the possible rewards (either discrete or continuous).

Policy π(a) is a probability distribution over the discrete action space.

� Explicit policy: directly stores the probabilities in π(a).

Example:

π(a = 1) π(a = 2) π(a = 3) π(a = 4)
0.2 0.7 0.0 0.1

� Implicit policy: stores other quantities, and computes π(a) from these upon
action selection.

Example:

Q(a = 1) Q(a = 2) Q(a = 3) Q(a = 4)
1.2 0.3 -2.4 3.5

and
π = f(Q(a))

2 Objective

At each timestep t, we sample an action at ∈ A, and receive a reward rt ∼ p(r|at).

2

Algorithm 1: Bandit algorithm pseudocode.

Input: Maximum number of timesteps T , often also an exploration
parameter.

Initialization: Initialize policy π(a)
for t = 1...T do

at ∼ π(a) /* Sample from policy */

rt ∼ p(r|at) /* Observe reward */

Update π based on (at, rt)
end

Values Define the action value Q(a) as the expected pay-off of an arm:

Q(a) = Er∼p(r|a)[r]

The best possible average pay-off in the problem is

V ? = max
a

Q(a)

Our goal is to find the policy that maximizes the cumulative sum of reward
J that we obtain over some horizon T :

JT (π) = Eat∼π(a),rt∼p(r|at)[
T∑
t=1

rt]

π? = arg max
π

JT (π)

3

3 Bandit algorithm choices

For each bandit algorithm, we typically need to decide on three aspects:

� The initial estimates of Q̂(a).

� The policy, i.e., the way to select actions, which should balance exploration
and exploitation.

� The update, i.e., the way we update our estimates of Q̂(a) based on the
observed reward after trying a particular action.

3.1 Initialization of mean

� Realistic

Q(a) = 0 ∀ a ∈ A

� Optimistic

Q(a) = ψ ∀ a ∈ A

for some initial value ψ ∈ R (a hyperparameter that should be tuned per
problem).

3.2 Policy

� Greedy policy (with optimistic intialization):

πgreedy(a) = f(Q) =

{
1, if a = arg maxb∈AQ(b)

0, otherwise
(1)

which we also write as

πgreedy = arg max
b∈A

Q(b)

(which returns an action instead of a probability of an action).

4

� ε-greedy policy:

πε−greedy(a) = f(Q, ε) =

{
1− ε, if a = arg maxb∈AQ(b)
ε

|A|−1 , otherwise
(2)

where ε ∈ [0, 1] scales the amount of exploration.

� Softmax/Boltzmann policy:

πsoftmax(a) = f(Q, τ) =
expQ(a)/τ∑
b∈A expQ(b)/τ

(3)

where τ ∈ R+ is a temperature parameter that scales the amount of explo-
ration.

� Upper confidence bound (UCB) policy:

πUCB(a) = f(Q,n, c) =

{
1, if a = arg maxb

[
Q(b) + c ·

√
ln t
n(b)

]
0, otherwise

(4)

where c ∈ R+ scales the amount of exploration, t denotes the timestep, and
n(a) denotes the number of previous visits to action a.

Importantly, when n(a) = 0, we evaluate the expression between the brack-
ets as ∞, which ensure that we always prefer an untried action over an
action that has already been tried.

This can be easier written as

πUCB = arg max
a

[
Q(a) + c ·

√
ln t

n(a)

]
(which returns an action instead of a probability of an action).

3.3 Update of a mean estimate

Given a sequence of observations r1, r2, ...rn for a particular arm a, we often want
to estimate the mean

Qn =
r1 + r2 + ...+ rn

n
=

1

n

n∑
i=1

ri

5

� Incremental mean update

Qn =
1

n

n∑
i=1

ri

=
1

n

[
rn +

n−1∑
i=1

ri

]
=

1

n

[
rn + (n− 1)

1

(n− 1)

n−1∑
i=1

ri

]
=

1

n

[
rn + (n− 1)Qn−1

]
=

1

n

[
rn + n ·Qn−1 −Qn−1

]
Qn = Qn−1 +

1

n

[
rn −Qn−1

]
(5)

� Learning mean update

Qn = Qn−1 + α
[
rn −Qn−1

]
(6)

for learning rate α ∈ (0, 1). This update is preferable for non-stationary
problems, since it will weight more recent observations more heavily.

6

4 Full Algorithms

Algorithm 2: ε-greedy bandit algorithm.

Input: Exploration parameter ε ∈ [0, 1], maximum number of timesteps
T .

Initialization: Initialize Q(a) = 0, n(a) = 0 ∀a ∈ A
for t = 1...T do

at =

{
arg maxa∈AQ(a) with p = 1− ε
random non-greedy action, with p = ε

/* ε-greedy

action */

rt ∼ p(r|at) /* Sample reward */

n(at)← n(at) + 1 /* Update count */

Q(at)← Q(at) + 1
n(at)

[
rt −Q(at)

]
/* Incr. update mean */

end

Algorithm 3: Optimistic initialization with greedy action selection ban-
dit algorithm.

Input: Initial value ψ ∈ R, learning rate η ∈ R+, maximum number of
timesteps T .

Initialization: Initialize Q(a) = ψ ∀a ∈ A /* Optimistic init. */

for t = 1...T do
at = arg maxa∈AQ(a) /* Sample greedy action */

rt ∼ p(r|at) /* Sample reward */

Q(at)← Q(at) + η ·
[
rt −Q(at)

]
/* Learning update mean */

end

7

Algorithm 4: UCB bandit algorithm.

Input: Exploration parameter c ∈ R+, maximum number of timesteps
T .

Initialization: Initialize Q(a) = 0, n(a) = 0 ∀a ∈ A
for t = 1...T do

at = arg maxa

[
Q(a) + c ·

√
ln t
n(a)

]
/* UCB action */

rt ∼ p(r|at) /* Sample reward */

n(at)← n(at) + 1 /* Update count */

Q(at)← Q(at) + 1
n(at)

[
rt −Q(at)

]
/* Incr. update mean */

end

8

	Definition
	Objective
	Bandit algorithm choices
	Initialization of mean
	Policy
	Update of a mean estimate

	Full Algorithms

