Lecture Notes:

Bandits

Course: Reinforcement Learning,
Bachelor Al, Leiden University

Written by: Thomas Moerland

1 Definition
A bandit is defined by the tuple

(A, p(r|a)),
where

e Ais a set of discrete actions (‘arms’).

e p(r|a) is a conditional probability distribution, mapping each action to a
distribution over the possible rewards (either discrete or continuous).

Policy 7(a) is a probability distribution over the discrete action space.

e Explicit policy: directly stores the probabilities in 7(a).

Example:

e Implicit policy: stores other quantities, and computes 7(a) from these upon
action selection.

Example:
Qla=1) Q=2 Q=3 Qa=4)
1.2 0.3 -24 3.5
and
™= f(Q(a))

2 Objective

At each timestep ¢, we sample an action a; € A, and receive a reward ry ~ p(r|az).

Algorithm 1: Bandit algorithm pseudocode.

Input: Maximum number of timesteps 7', often also an exploration
parameter.

Initialization: Initialize policy 7(a)

fort=1..T do
a; ~ m(a) /* Sample from policy */
ry ~ p(r|a;) /* Observe reward */
Update 7 based on (at,)

end

Values Define the action value Q(a) as the expected pay-off of an arm:

Q(a) = Errvp(r\a) [’l"]
The best possible average pay-off in the problem is
V* = maxQ(a)

Our goal is to find the policy that maximizes the cumulative sum of reward
J that we obtain over some horizon T

Ir(1) = Baymn(a)rimp(rian| D Tt]

t=1

7 = argmax Jp ()

3 Bandit algorithm choices

For each bandit algorithm, we typically need to decide on three aspects:

3.1

3.2

The initial estimates of Q(a).

The policy, i.e., the way to select actions, which should balance exploration
and exploitation.

The update, i.e., the way we update our estimates of Q(a) based on the
observed reward after trying a particular action.

Initialization of mean
Realistic
Qa)=0 V ac A
Optimistic
Qa)=¢ V a€eA
for some initial value ¢ € R (a hyperparameter that should be tuned per
problem).
Policy
Greedy policy (with optimistic intialization):

1, if @ = argmax;,c 4 Q(b) (1)
0, otherwise

Tareedy (@) = f(Q) = {

which we also write as

Tgreedy = g n;‘ax Q(b)
be

(which returns an action instead of a probability of an action).

o c-greedy policy:

Te—greedy (a) = f(Qa 6) = (2)

€

1—¢, if a =argmax,c 4 Q(b)
TA[=T otherwise

where € € [0, 1] scales the amount of exploration.

e Softmax/Boltzmann policy:

expQ(a)/7
7Tfmxa:fCQ,T: 3
sofima () () dpeaexpQ(d)/T ®)
where 7 € RT is a temperature parameter that scales the amount of explo-

ration.

e Upper confidence bound (UCB) policy:

1, if a = argmax, [Q(b) +ec- %

0, otherwise

TTUCB (a) = f(Q7 ’I’L,C) = {

where ¢ € R™ scales the amount of exploration, ¢ denotes the timestep, and
n(a) denotes the number of previous visits to action a.

Importantly, when n(a) = 0, we evaluate the expression between the brack-
ets as 0o, which ensure that we always prefer an untried action over an
action that has already been tried.

This can be easier written as

TUCB = arg max [Q(a) +ec-
a
(which returns an action instead of a probability of an action).

3.3 Update of a mean estimate

Given a sequence of observations 71,79, ...r, for a particular arm a, we often want
to estimate the mean

r+rot+ ..+ 1
Qn: ! 2n niﬁZTi

e Incremental mean update

@n

e Learning mean update

Qn = Qu-1+alrn— Qi)

for learning rate a € (0,

1
02
i=1
n—1
o
n—1
%[rn +(n— 1)(n i) & n}
%[Tn +(n— 1)Qn—1]

(6)

1). This update is preferable for non-stationary

problems, since it will weight more recent observations more heavily.

4 Full Algorithms

Algorithm 2: e-greedy bandit algorithm.

Input: Exploration parameter € € [0, 1], maximum number of timesteps

T.
Initialization: Initialize Q(a) =0, n(a) =0Va € A

fort=1..T do

_ Jargmax,c 4 Q(a) ' W%th p=1—c¢ /% c-greedy
random non-greedy action, with p=ce¢

action */
ry ~ p(r|ag) /* Sample reward */
n(ay) < n(ay) + 1 /* Update count */
Qay) + Q(ay) + ﬁ [rt — Q(at)} /* Incr. update mean */

end

Algorithm 3: Optimistic initialization with greedy action selection ban-
dit algorithm.

Input: Initial value ¥ € R, learning rate n € RT, maximum number of
timesteps 7.

Initialization: Initialize Q(a) =1 Ya € A /* Optimistic init. */

fort=1...T do

a; = argmax,e 4 Q(a) /* Sample greedy action */

¢ ~ p(r|a) /* Sample reward */

Qar) + Qar) +n- [Tt — Q(at)] /* Learning update mean */
end

Algorithm 4: UCB bandit algorithm.

Input: Exploration parameter ¢ € RT, maximum number of timesteps
T.

Initialization: Initialize Q(a) =0, n(a) =0Va € A

fort=1..T do

a; = argmax, [Q(a) +c- 71’(15) /* UCB action */

e ~ p(rlat) /* Sample reward */

n(a) < nla;) +1 /* Update count */

Qar) + Qar) + @ {rt — Q(at)] /* Incr. update mean */
end

	Definition
	Objective
	Bandit algorithm choices
	Initialization of mean
	Policy
	Update of a mean estimate

	Full Algorithms

