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which may be solved through reinforcement learning.
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Instrumental conditioning: 
Learning behaviour based on reward and punishment (trial and error) 

RL is the computational specification of this idea

Biology
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Supervised versus reinforcement learning

Supervised learning Reinforcement learning

Dataset Given Active collection

Feedback Full

(x with correct y)

Partial

(state with correct action)
(feedback on some outcomes)
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Benefits of Reinforcement Learning

Outperform human solution
(only need to label the outcome)

Solve tasks that you can’t label
(only need to label the outcome)

Autonomous behaviour/learning
(only specify goals)
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Agent-Environment loop

Agent

Environment

action a

state
s

reward
r

… that gets as much reward as possible!

Find an action selection strategy…
( policy  π(a|s) )



Reward



Immediate reward

Reward



Immediate reward
Cumulative reward

Reward



Immediate reward
Cumulative reward

Expected cumulative reward

Reward



Immediate reward
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Expected cumulative reward

Reward

Average over stochasticity in 1) environment and 2) own policy.
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Immediate reward
Cumulative reward

Expected cumulative reward
= Value

Reward

Q-value: total reward we get on average after taking action a in state s.
- Depends on our own future behaviour π (if we act stupid, reward will be low)

Can show each state-action has one optimal value, denoted by Q*(s,a). 
- These are the quantities we want to know!
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Question: What should you do at Home? 
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Illustration: Optimal Value

Question: What should you do at Home? 
Answer: Come to University!

Q* = 2.0 Q* = 9.0

Once we know the 
optimal values we 
also know how to 

act optimally
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Challenge

Q* = ? Q* = ?

Q* = ?Q* = ?

Problem: In practice we don’t know the problem structure and optimal Q-values.

Solution: Learn through trial and error. 
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Q =0 

Qback-up= …

Pseudocode

Initialize Q(s,a) solution estimates for all states 
and actions (e.g. to 0)

Repeat: 
   1) Exploration: Sample a sequence of actions.
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Q =0 

etc.

Pseudocode

Initialize Q(s,a) solution estimates for all states 
and actions (e.g. to 0)

Repeat: 
   1) Exploration: Sample a sequence of actions.

   2) Credit assignment: Compute new value
       estimates Qback-up(s,a) for all actions along
       the path.  

   3) Learning update: Adjust our Q(s,a) solution
       based on the back-up estimates Qback-up(s,a).
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The Reinforcement Learning Cycle

Q =0 

We will discuss all three steps, but in reverse order

Pseudocode

Initialize Q(s,a) solution estimates for all states 
and actions (e.g. to 0)

Repeat: 
   1) Exploration: Sample a sequence of actions.

   2) Credit assignment: Compute new value
       estimates Qback-up(s,a) for all actions along
       the path.  

   3) Learning update: Adjust our Q(s,a) solution
       based on the back-up estimates Qback-up(s,a).

Q = … Q = …

Q = …
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Learning update (tabular)

To update our solution we take the current solution and move it a (small) step… 

…in the direction of the back-up estimate.

‘training target’
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Pseudocode

Initialize Q(s,a) solution estimates for all states 
and actions (e.g. to 0)

Repeat: 
   1) Exploration: Sample a sequence of actions.

   2) Credit assignment: Compute new value
       estimates Qback-up(s,a) for all actions along
       the path.  

   3) Learning update: Adjust our Q(s,a) solution
       based on the back-up estimates Qback-up(s,a).
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Credit assignment

…

Question: You get the reward (not soaked), but which of your previous actions 
deserve credit? 

Forecast Umbrella? Unrelated task RainMore unrelated tasks
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Credit assignment

You think this is easy, but humans actually also struggle:

Superstition 
= 

failed credit assignment
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One extreme: each action along the way gets full credit

Nadal wins the tennis game
(r = +100)

align bottles
(r= -1)

Qback-up = 99

Monte Carlo back-up

+ Fast propagation. 
- High variance (action may seem better or worse than it really is)

Qback-up = 100
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Credit assignment

Other extreme: only last action gets credit (for now). 

align bottles
(r= -1)

Qback-up = -1

Nadal wins the tennis game
(r = +100)One-step (temporal difference) back-up 

+ Low variance. 
- Slow propagation.

Qback-up = 100

Qback-up = 100
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Spectrum of back-up estimators 



The Reinforcement Learning Cycle

Q = 0 Q = 0

Q =0 Q = 0

Pseudocode

Initialize Q(s,a) estimates for all states,actions 
(e.g. to 0)

Repeat: 
   1) Exploration: Sample a sequence of actions.

   2) Credit assignment: Compute new value
       estimates Qback-up(s,a) for all actions along
       the path.  

   3) Update: Adjust our Q(s,a) solution based
       on the new back-up estimates Qback-up(s,a).
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Q = 0 Q = 0

Q =0 Q = 0

Pseudocode

Initialize Q(s,a) estimates for all states,actions 
(e.g. to 0)

Repeat: 
   1) Exploration: Sample a sequence of actions.

   2) Credit assignment: Compute new value
       estimates Qback-up(s,a) for all actions along
       the path.  

   3) Update: Adjust our Q(s,a) solution based
       on the new back-up estimates Qback-up(s,a).
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Exploitation

(commit to the current best 
option)

Exploration

(try something which is new 
or – currently – seems 

suboptimal)

We actually need to balance both
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Exploration/Exploitation trade-off

Q = 0 Q = 0

Q =0 Q = 0

We will use Monte 
Carlo back-ups and 
a learning rate of 0.1
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Exploration/Exploitation trade-off

If you never go to 
university, you will 

never find out the pay-off

Q = 0.2 Q = 0

Q =0 Q = 0
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We need exploration because actions may look worse than they are. 

Reasons:  
1. We need to collect our own data

Exploration/Exploitation trade-off

Q = 0.2 Q = 0.1

Q =0 Q = 0.2

A good decision may 
seem bad if it is followed 

by bad decisions
(and vice versa)
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We need exploration because actions may look worse than they are. 

Reasons:  
1. We need to collect our own data
2. Good action may seem bad if 

followed by bad actions

Exploration/Exploitation trade-off

Q = 0Q = 0

Q = 0Q = 0

Q = 0.2 Q = -1.01

Q = -1.0 Q = 0.2

Action may seem overly 
bad due to bad luck 

(and vice versa)
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followed by bad actions
3. Environment can be stochastic
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You still persist…
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We need exploration because actions may look worse than they are. 

Reasons:  
1. We need to collect our own data
2. Good action may seem bad if 

followed by bad actions
3. Environment can be stochastic

We also need exploitation. 

Reasons: 
1. Want to use what we learned
2. In bigger problems: move in

promising directions to further explore.

Exploration/Exploitation trade-off

Q = 0Q = 0

Q = 0Q = 0

Q = 0.2 Q = 0.89

Q = 1.09 Q = 0.2Q = 0.2
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Huge amount of strategies, we will here discuss one (simple) example: 

Boltzmann (softmax) exploration
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Boltzmann (softmax) exploration

Q = 2 Q = -1 Q = 4

a1 a2
a3

Intuition: give all actions a chance (exploration), but actions with higher Q-estimate 
deserve a higher probability (exploitation).
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Boltzmann (softmax) exploration

To get the probability of 
selecting action ai in state s…
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exponentiated Q-values of all actions 
(to make it a valid probability 
distribution). 



Boltzmann (softmax) exploration

To get the probability of 
selecting action ai in state s…

… we exponentiate its Q-value…

… and normalize over the sum of 
exponentiated Q-values of all actions 
(to make it a valid probability 
distribution). 

Temperature 𝛕 scales the 
amount of exploration: 

𝛕 → 0   :      one-hot (exploit)
𝛕 → ∞   :      uniform (explore)
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a1 a2
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Q = -1

π=0.01

Q = 4

π=0.87

a1 a2
a3

𝛕=1.0
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Q = -1

π=0.01

π=0.0

Q = 4

π=0.87

π=1.0

a1 a2
a3

𝛕=1.0

𝛕=0.01 full exploitation
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full exploitation
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a1 a2
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Q = 2

π=0.12

π=0.0

π=0.33

Q = -1

π=0.01

π=0.0

π=0.32

Q = 4

π=0.87

π=1.0

π=0.34

a1 a2
a3

𝛕=1.0

𝛕=0.01

𝛕=100

full exploitation

full exploration

Can anneal 𝛕 during 
training to gradually 

transition from exploration 
to exploitation



Exploration

(video)
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The Reinforcement Learning Cycle

Pseudocode

Initialize Q(s,a) estimates for all states,actions 
(e.g. to 0)

Repeat: 
   1) Exploration: Boltzmann policy with
       annealing temperature. 

   2) Credit assignment: Monte Carlo back-up.

   3) Update: Tabular learning rule with learning
       rate 0.1

Q = 0 Q = 0

Q =0 Q = 0
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Deep reinforcement learning
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Deep reinforcement learning = deep learning + reinforcement learning

Observation spaces in reinforcement are usually high-dimensional

We need to use function approximation, e.g., deep learning, to store our solution
(to fit it in memory & profit from generalization)

Deep reinforcement learning
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Deep Reinforcement Learning

Agent

Environment

Agent

AgentAgent

as,r

Exploration

Specify architecture

Credit assignment

Specify loss

Gradient descent on loss

RL is supervised learning on a moving target function that influences which data you see.

s,a Q
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- Many tasks can be formulated as a sequential decision making problem, for 
which you can use reinforcement learning (RL). 

- The main benefit of RL is that you can learn tasks you only label on outcomes, 
potentially outperforming human solutions. 

- Key topics in RL are exploration (which action should I try next) and credit 
assignment (how do I process the obtained reward information). 

- Reinforcement learning is supervised learning on a moving target that 
influences which data you see. 

Conclusion
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AI & Robotics challenge



AI & Robotics challenge

Extra-curricular course (2 ECTS)
Sign-up in September 2023



Questions?


