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Last Week: Value function



The average cumulative reward we get from a certain state/action for a given policy

- Each policy π has its own value function. 

- Defined for states vπ(s) and state-actions qπ(s,a)

- There is only one optimal value function v*(s) / q*(s,a) 

- We can get π*(a|s) from v*(s) / q*(s,a) by acting greedily with respect to it (selecting the 
action with the highest value)

Last Week: Value function



Today



Value function
vπ(s) ← →qπ(s,a)

Policy
π(a|s)

Today



Value function
vπ(s) ← →qπ(s,a)

Policy
π(a|s)
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Discuss relations 
between values at 

different state(-actions)
[incl. recursion)



Value function
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Policy
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Today
Policy evaluation:

Compute the value of policy



Value function
vπ(s) ← →qπ(s,a)

Policy
π(a|s)

I
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Implicit policies & Policy Improvement:
Define a new policy from a value function



Value function
vπ(s) ← →qπ(s,a)

Policy
π(a|s)

I

II

III

IV

Today Generalized Policy Iteration:
Iterate both procedures to find the optimal value & policy



Overview



I. Value relations
a. Relation between v(s) and q(s,a) v(s) to q(s,a) & q(s,a) to v(s)
b. Bellman Equation v(s) to v(s’) & q(s) to q(s’)
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I. Value relations
a. Relation between v(s) and q(s,a) v(s) to q(s,a) & q(s,a) to v(s)
b. Bellman Equation v(s) to v(s’) & q(s) to q(s’)

II. Policy Evaluation (DP) π to vπ(s)

III. Implicit policies v(s)/q(s,a) to new π

IV. Finding the optimal value function & policy (v*, q*, π*) 
a. Bellman Optimality Equation v*(s’) to v*(s) & q*(s,a) to q*(s’,a’)
b. Value Iteration (DP)
c. Generalized Policy Iteration
d. Policy Iteration (DP)

Overview



Part I

Value relations



Part Ia

Relation between v(s) and q(s,a)



Relation between v(s) to q(s,a)



The state value v(s) and state-action value q(s,a) represent 

the same underlying function at different points

Relation between v(s) to q(s,a)



The state value v(s) and state-action value q(s,a) represent 

the same underlying function at different points

They can be rewritten into eachother!

Relation between v(s) to q(s,a)





The value of terminal states is by definition 0.0

v=0 v=0 

v=0 
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Question: What is q(Uni, Study)? 
Answer: 10% of times we Fail Exam for r=-10 and v(s’)=0 from next state, 

90% of times we Pass Exam for r= 10 and v(s’)=0 from next state
q(Uni,Study) = 0.1 · (10 + 0) + 0.9 · (10 + 0) = 8.0
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Question: What is q(Uni, Study)? 
Answer: 10% of times we Fail Exam for r=-10 and v(s’)=0 from next state, 

90% of times we Pass Exam for r= 10 and v(s’)=0 from next state
q(Uni,Study) = 0.1 · (10 + 0) + 0.9 · (10 + 0) = 8.0

v=0 v=0 

v=0 

q=8.0 

To go from v(s’) to q(s,a) 
we need to average over 
the transition probabilities



From v(s) to q(s,a)



To get q(s,a) we weight the reward plus next state value v(s’) by their transition probabilities

From v(s) to q(s,a)



To get q(s,a) we weight the reward plus next state value v(s’) by their transition probabilities

From v(s) to q(s,a)



To get q(s,a) we weight the reward plus next state value v(s’) by their transition probabilities
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To get q(s,a) we weight the reward plus next state value v(s’) by their transition probabilities

From v(s) to q(s,a)

‘Back-up diagram’:

Visual illustration of a 
back-up formula



To get q(s,a) we weight the reward plus next state value v(s’) by their transition probabilities

From v(s) to q(s,a)

For each possible next state 
compute the reward plus next 

state value 



To get q(s,a) we weight the reward plus next state value v(s’) by their transition probabilities

From v(s) to q(s,a)

Average these according to their 
transition probabilities



To get q(s,a) we weight the reward plus next state value v(s’) by their transition probabilities

(requirement: transition probabilities, rewards, discount γ)

From v(s) to q(s,a)



v=0 v=0 

v=0 

q=8.0 



q(Uni,Go Out) = 2.0 since we always get r=2.0 and terminate in the Bar

v=0 v=0 

v=0 

q=8.0 q=2.0 



Question: But what is v(Uni)? (How do we go from q(s,a) to v(s)...)

v=0 v=0 

v=0 

q=8.0 q=2.0 

v=? 



Question: But what is v(Uni)? (How do we go from q(s,a) to v(s)...)
Answer: Depends on our own policy!

v=0 v=0 

v=0 

q=8.0 q=2.0 

v=? 



Question: But what is v(Uni) under a random policy? 

v=0 v=0 

v=0 

q=8.0 q=2.0 

v=? 



Question: But what is v(Uni) under a random policy? 
Answer: 50% of times we Go Out for an expected return of 2.0

50% of times we Study for an expected return of 8.0
v(Uni) = 0.5 · 2.0 + 0.5 · 8.0 = 5.0

v=0 v=0 

v=0 

q=8.0 q=2.0 

v=5.0 

To go from q(s,a) to v(s) 
we need to average over 
our policy probabilities



From q(s,a) to v(s)



To get v(s) we weight the q(s,a) of each available action by its selection probability

From q(s,a) to v(s)



To get v(s) we weight the q(s,a) of each available action by its selection probability
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To get v(s) we weight the q(s,a) of each available action by its selection probability
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To get v(s) we weight the q(s,a) of each available action by its selection probability

(requirement: policy probabilities)

From q(s,a) to v(s)



To get v(s) we weight the q(s,a) of each available action by its selection probability

(requirement: policy probabilities)

From q(s,a) to v(s)

Take the state-action 
value of each 

available action…



To get v(s) we weight the q(s,a) of each available action by its selection probability

(requirement: policy probabilities)

From q(s,a) to v(s)

…and reweight them 
according to their 
policy probability



Summary
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Summary

Can write q(s,a) 
as a function of 

v(s’)

Can write v(s) 
as function of 

q(s,a) 



Part Ib

Bellman Equation





Can combine 
both steps to 
write v(s) as a 

function of the 
next state 
values v(s’)



Bellman Equation for v(s)
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Bellman Equation for v(s)



The value of a state is equal to 

Bellman Equation for v(s)



The value of a state is equal to the average over all action probabilities 

Bellman Equation for v(s)



The value of a state is equal to the average over all action probabilities of each average over 
the resulting transition probabilities

Bellman Equation for v(s)



The value of a state is equal to the average over all action probabilities of each average over 
the resulting transition probabilities of the reward plus next state value of that transition

Bellman Equation for v(s)



Recursive



The Bellman Equation is recursive

Every state value can be written as a function of the values at states that may follow it

Recursive



System of equations



System of equations

vπ(s=1) = … 
vπ(s=2) = … 
vπ(s=3) = … 
vπ(s=4) = … 
vπ(s=5) = … 



System of equations

vπ(s=1) = … 
vπ(s=2) = … 
vπ(s=3) = … 
vπ(s=4) = … 
vπ(s=5) = … 

In each equation you plug in the correct transition 
probabilities and rewards from that state



- The Bellman Equation specifies a system of (linear) equations
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- The Bellman Equation specifies a system of (linear) equations

- We can write out one equation for each state (|S| in total)

System of equations

vπ(s=1) = … 
vπ(s=2) = … 
vπ(s=3) = … 
vπ(s=4) = … 
vπ(s=5) = … 



- The Bellman Equation specifies a system of (linear) equations

- We can write out one equation for each state (|S| in total)

- The v(s) values of each state are the unknowns (|S| unknowns)

System of equations

vπ(s=1) = … 
vπ(s=2) = … 
vπ(s=3) = … 
vπ(s=4) = … 
vπ(s=5) = … 





We can of course also 
write a Bellman equation 

for state-action values 
q(s,a)



Bellman Equation for q(s,a)



Bellman Equation for q(s,a)



Bellman Equation for q(s,a)



Same equation

Bellman Equation for q(s,a)



Same equation, but we now first sum over transition probabilities

Bellman Equation for q(s,a)



Same equation, but we now first sum over transition probabilities, and then over the action 
probabilities

Bellman Equation for q(s,a)



Bellman Equation from building blocks



Bellman Equation from building blocks

v(s) from q(s,a)



Bellman Equation from building blocks

v(s) from q(s,a) q(s,a) from v(s)



Bellman Equation from building blocks



Bellman Equation from building blocks

Substitute q(s,a) to get the Bellman Equation for state values v(s)



Bellman Equation from building blocks

Substitute v(s) to get the Bellman Equation for state-action values q(s,a)

Substitute q(s,a) to get the Bellman Equation for state values v(s)

Write this out yourself at home!



Summary



Summary

Can write v(s) as a 
function of v(s’)



Summary

Can write v(s) as a 
function of v(s’)

And q(s,a) as a 
function of q(s’,a’)



Part II

Policy Evaluation



Policy Evaluation



Value function
vπ(s) / qπ(s,a)

Policy
π(a|s)

Policy Evaluation



Compute the value function of a given policy

Value function
vπ(s) / qπ(s,a)

Policy
π(a|s)

Policy Evaluation

Policy Evaluation



Compute the value function of a given policy

We can efficiently compute this through Dynamic Programming on the Bellman Equation

Value function
vπ(s) / qπ(s,a)

Policy
π(a|s)

Policy Evaluation

Policy Evaluation



Dynamic Programming (DP)



General concept:

Dynamic Programming (DP)



General concept:

- Break a large problem into smaller subproblems
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- Break a large problem into smaller subproblems

- Efficiently store and reuse intermediate results

Dynamic Programming (DP)



General concept:

- Break a large problem into smaller subproblems

- Efficiently store and reuse intermediate results

- Repeatedly solving the small problem solves the big problem

Dynamic Programming (DP)



Dynamic Programming (DP)



In the context of Markov Decision Processes: 

Dynamic Programming (DP)



In the context of Markov Decision Processes: 

- Small subproblem given by the Bellman Equation

Dynamic Programming (DP)



In the context of Markov Decision Processes: 

- Small subproblem given by the Bellman Equation

- Repeatedly solving it gives us the Value Function

Dynamic Programming (DP)



Policy Evaluation through DP



Compute the value of a given policy

Policy Evaluation through DP



Compute the value of a given policy

Input: a policy π(a|s), an MDP (p(s’|s,a), r(s,a,s’), γ)
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Compute the value of a given policy

Input: a policy π(a|s), an MDP (p(s’|s,a), r(s,a,s’), γ)

Algorithm: 
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Compute the value of a given policy

Input: a policy π(a|s), an MDP (p(s’|s,a), r(s,a,s’), γ)

Algorithm: 
- Initialize v(s)=0 for all s

Policy Evaluation through DP



Compute the value of a given policy

Input: a policy π(a|s), an MDP (p(s’|s,a), r(s,a,s’), γ)

Algorithm: 
- Initialize v(s)=0 for all s
- Sweep through all states, updating according to Bellman Equation: 
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Compute the value of a given policy

Input: a policy π(a|s), an MDP (p(s’|s,a), r(s,a,s’), γ)

Algorithm: 
- Initialize v(s)=0 for all s
- Sweep through all states, updating according to Bellman Equation: 

Policy Evaluation through DP



Compute the value of a given policy

Input: a policy π(a|s), an MDP (p(s’|s,a), r(s,a,s’), γ)

Algorithm: 
- Initialize v(s)=0 for all s
- Sweep through all states, updating according to Bellman Equation: 

- Until v(s) converges

Policy Evaluation through DP



Policy Evaluation through DP: Example



Policy Evaluation through DP: Example

MDP



Policy Evaluation through DP: Example

MDP

Bellman Equation



Policy Evaluation through DP: Example

s v(s)

Home 0.0

Bar 0.0

Uni 0.0

Fail exam 0.0

Pass exam 0.0

Solution table MDP

Bellman Equation



Assume random policy

Policy Evaluation through DP: Example

s v(s)

Home 0.0

Bar 0.0

Uni 0.0

Fail exam 0.0

Pass exam 0.0

Solution table MDP

Bellman Equation



Assume random policy
Q: What is the update of v(Home)?

Policy Evaluation through DP: Example

s v(s)

Home 0.0

Bar 0.0

Uni 0.0

Fail exam 0.0

Pass exam 0.0

Solution table MDP

Bellman Equation



Assume random policy
Q: What is the update of v(Home)?
A: 0.5 · (2.0 + 0) + 0.5 · (-1.0 + 0.0) = 0.5

Policy Evaluation through DP: Example

s v(s)

Home 0.0

Bar 0.0

Uni 0.0

Fail exam 0.0

Pass exam 0.0

Solution table MDP

Bellman Equation



Assume random policy
Q: What is the update of v(Home)?
A: 0.5 · (2.0 + 0) + 0.5 · (-1.0 + 0.0) = 0.5

Policy Evaluation through DP: Example

s v(s)

Home 0.5

Bar 0.0

Uni 0.0

Fail exam 0.0

Pass exam 0.0

Solution table MDP

Bellman Equation



Assume random policy
Q: What is the update of v(Bar)?

Policy Evaluation through DP: Example

s v(s)

Home 0.5

Bar 0.0

Uni 0.0

Fail exam 0.0

Pass exam 0.0

Solution table MDP

Bellman Equation



Assume random policy
Q: What is the update of v(Bar)?
A: 0.0 (terminal)

Policy Evaluation through DP: Example

s v(s)

Home 0.5

Bar 0.0

Uni 0.0

Fail exam 0.0

Pass exam 0.0

Solution table MDP

Bellman Equation



Assume random policy
Q: What is the update of v(Uni)?

Policy Evaluation through DP: Example

s v(s)

Home 0.5

Bar 0.0

Uni 0.0

Fail exam 0.0

Pass exam 0.0

Solution table MDP

Bellman Equation



Assume random policy
Q: What is the update of v(Uni)?
A: 0.5 · (2.0 + 0) + 

0.5 · (0.1 ·  (-10 + 0.0) + 0.9 · (10 + 0)) 
= 5.0

Policy Evaluation through DP: Example

s v(s)

Home 0.5

Bar 0.0

Uni 0.0

Fail exam 0.0

Pass exam 0.0

Solution table MDP

Bellman Equation



Assume random policy
Q: What is the update of v(Uni)?
A: 0.5 · (2.0 + 0) + 

0.5 · (0.1 ·  (-10 + 0.0) + 0.9 · (10 + 0)) 
= 5.0

Policy Evaluation through DP: Example

s v(s)

Home 0.5

Bar 0.0

Uni 5.0

Fail exam 0.0

Pass exam 0.0

Solution table MDP

Bellman Equation



Fail exam is terminal

Policy Evaluation through DP: Example

s v(s)

Home 0.5

Bar 0.0

Uni 5.0

Fail exam 0.0

Pass exam 0.0

Solution table MDP

Bellman Equation



Pass exam is terminal

Policy Evaluation through DP: Example

s v(s)

Home 0.5

Bar 0.0

Uni 5.0

Fail exam 0.0

Pass exam 0.0

Solution table MDP

Bellman Equation



Repeat!

Policy Evaluation through DP: Example

s v(s)

Home 0.5

Bar 0.0

Uni 5.0

Fail exam 0.0

Pass exam 0.0

Solution table MDP

Bellman Equation



Assume random policy
Q: What is the update of v(Home)?
A: 

Policy Evaluation through DP: Example

s v(s)

Home 0.5

Bar 0.0

Uni 5.0

Fail exam 0.0

Pass exam 0.0

Solution table MDP

Bellman Equation



Assume random policy
Q: What is the update of v(Home)?
A: 0.5 · (2.0 + 0) + 0.5 · (-1.0 + 5.0) = 3.0

Policy Evaluation through DP: Example

s v(s)

Home 0.5

Bar 0.0

Uni 5.0

Fail exam 0.0

Pass exam 0.0

Solution table MDP

Bellman Equation



Assume random policy
Q: What is the update of v(Home)?
A: 0.5 · (2.0 + 0) + 0.5 · (-1.0 + 5.0) = 3.0

Policy Evaluation through DP: Example

s v(s)

Home 3.0

Bar 0.0

Uni 5.0

Fail exam 0.0

Pass exam 0.0

Solution table MDP

Bellman Equation



Repeat until convergence 
(i.e. v(s) estimates stabilize)

= result is true vπ(s)

Policy Evaluation through DP: Example

s v(s)

Home 0.5

Bar 0.0

Uni 5.0

Fail exam 0.0

Pass exam 0.0

Solution table MDP

Bellman Equation



Value function
vπ(s) / qπ(s,a)

Policy
π(a|s)

Summary



Value function
vπ(s) / qπ(s,a)

Policy
π(a|s)

Summary
Policy Evaluation: 

compute value function of a given policy



We can efficiently compute the value of a given policy through Dynamic Programming,

repeatedly solving the Bellman Equation

Value function
vπ(s) / qπ(s,a)

Policy
π(a|s)

Summary
Policy Evaluation: 

compute value function of a given policy



Part III

Implicit Policies



From v(s) / q(s,a) to new π
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Policy
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From v(s) / q(s,a) to new π

Every policy induces a value function



Value function
vπ(s) / qπ(s,a)

Policy
π(a|s)

From v(s) / q(s,a) to new π

Every policy induces a value function

Can we also use a given value function to define a new policy?



Explicit policy



Directly store the policy probabilities

Explicit policy



Directly store the policy probabilities

Explicit policy



Implicit policy



Only store value function, define policy as function of the value estimates

Implicit policy



Only store value function, define policy as function of the value estimates

Implicit policy



Only store value function, define policy as function f() of the value estimates

π(a|s) = f(v) or f(q)

Implicit policy



Only store value function, define policy as function of the value estimates

π(a|s) = f(q/v)

Implicit policy

f() can take many forms: 
- greedy (DP)
- Ɛ-greedy (RL)
- Boltzmann (RL)
- etc. 



Only store value function, define policy as function of the value estimates

π(a|s) = f(q/v)

Implicit policy

f() can take many forms: 
- greedy (DP)
- Ɛ-greedy (RL)
- Boltzmann (RL)
- etc. 



Example: Greedy policy



‘Always select the action with the highest state-action value estimate’
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For q(s,a): Easy to compute the greedy policy
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For q(s,a): Easy to compute the greedy policy (main benefit of state-action values)
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‘Always select the action with the highest state-action value estimate’

For q(s,a): Easy to compute the greedy policy (main benefit of state-action values)

Example: Greedy policy

Question: What is πgreedy(Uni)?



‘Always select the action with the highest state-action value estimate’

For q(s,a): Easy to compute the greedy policy (main benefit of state-action values)

Example: Greedy policy

Question: What is πgreedy(Uni)?
Answer: Study



‘Always select the action with the highest state-action value estimate’

For q(s,a): Easy to compute the greedy policy (main benefit of state-action values)

For v(s): 

Example: Greedy policy



‘Always select the action with the highest state-action value estimate’

For q(s,a): Easy to compute the greedy policy (main benefit of state-action values)

For v(s): More complicated, for each action need to go over the dynamics again

Example: Greedy policy



‘Always select the action with the highest state-action value estimate’

For q(s,a): Easy to compute the greedy policy (main benefit of state-action values)

For v(s): More complicated, for each action need to go over the dynamics again

Example: Greedy policy



‘Always select the action with the highest state-action value estimate’

For q(s,a): Easy to compute the greedy policy (main benefit of state-action values)

For v(s): More complicated, for each action need to go over the dynamics again
(downside of state values - less useful for action selection)

Example: Greedy policy



The greedy/max policy is a form of policy improvement

Policy Improvement



The greedy/max policy is a form of policy improvement

If we take a policy π

Policy Improvement



The greedy/max policy is a form of policy improvement

If we take a policy π

compute its true value function qπ(s,a) 

Policy Improvement



The greedy/max policy is a form of policy improvement

If we take a policy π

compute its true value function qπ(s,a) 

and then compute a greedy new policy πnew = greedy(qπ(s,a)) 

Policy Improvement



The greedy/max policy is a form of policy improvement

If we take a policy π

compute its true value function qπ(s,a) 

and then compute a greedy new policy πnew = greedy(qπ(s,a)) 

Then πnew is guaranteed to be a better policy then π

Policy Improvement



Summary



Value function
vπ(s) / qπ(s,a)

Policy
π(a|s)

Summary

Every policy induces a value function



Value function
vπ(s) / qπ(s,a)

Policy
π(a|s)

Summary

Every policy induces a value function

Can define new policy from a value function (‘Implicit policy’)



Value function
vπ(s) / qπ(s,a)

Policy
π(a|s)

Summary

Every policy induces a value function

Can define new policy from a value function (‘Implicit policy’)
The greedy policy over a true value function always improves (‘Policy Improvement’)



Part IV

Finding v*, q* and π*



Part IVa

Bellman Optimality Equation



We are of course most interested in the optimal value function v*(s)/q*(s,a) 

and associated optimal policy π*(a|s)



We are of course most interested in the optimal value function v*(s)/q*(s,a) 

and associated optimal policy π*(a|s)

But what changes to our back-up equations in this case?







Terminal states values are still 0.0 under the optimal policy

v*=0 v*=0 

v*=0 



To compute q*(s,a) from v*(s) we still average over the transition dynamics

v*=0 v*=0 

v*=0 

q*=8.0 q*=2.0 



Question: But what is v*(Uni)? (i.e., how do we go from q* to v* under the optimal policy)

v*=0 v*=0 

v*=0 

q*=8.0 q*=2.0 

v*=? 



Question: But what is v*(Uni)? (i.e., how do we go from q* to v* under the optimal policy)
Answer: v*(Uni) = 8.0

Under the optimal policy we greedily choose the action with the highest value!

v*=0 v*=0 

v*=0 

q*=8.0 q*=2.0 

v*=8.0 
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For the optimal policy the expectation over policy probabilities changes into a maximization

Optimal policy



Key insight: 

The optimal policy is a greedy/max policy with respect to the optimal state-action values

(‘rational agent’)

Optimal policy

q*=2.0 q*=6.0 q*=-4.0 



Key insight: 

The optimal policy is a greedy/max policy with respect to the optimal state-action values

(‘rational agent’)

Optimal policy

q*=2.0 q*=6.0 q*=-4.0 

π*(a|s)= [0.0, 0.0, 1.0]



Key insight: 

The optimal policy is a greedy/max policy with respect to the optimal state-action values

(‘rational agent’)

If we find the optimal values q* we also know the optimal policy
(just act greedily with respect to the values)

Optimal policy

q*=2.0 q*=6.0 q*=-4.0 

π*(a|s)= [0.0, 0.0, 1.0]



Bellman Optimality Equation



We can use this insight to write a specific Bellman Equation for the optimal value function

Bellman Optimality Equation
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Bellman Optimality Equation for v*(s)

Only the max over action changed



This (system of) equations is only satisfied by the optimal state value function v*(s,a)

Bellman Optimality Equation for v*(s)

Only the max over action changed
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Q: How would you compute v*(Uni)?
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Best action is Study
which may (10-90%) lead to two next states
10% gives reward of -10 plus nothing after
90% gives reward of +10 plus nothing after

Bellman Optimality Equation is very intuitive: 
we used it (without knowing it as an equation) at the very start of the previous lecture 

Bellman Optimality Equation: Illustration
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Bellman Optimality Equation for q*(s,a)

Again only the max over 
action changed



Bellman Optimality Equation for q*(s,a)

This (system of) equations is only satisfied by the optimal state-action value function q*(s,a)



Part IVb

Value Iteration



Value Iteration



Value Iteration

If we perform Dynamic Programming (as before) but on the Bellman Optimality Equation,

then we converge on the optimal state(-action) value function!
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Algorithm: 
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- Repeat until convergence:

- For each s in state space: 

- For each a in action space: 
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Input: an MDP (p(s’|s,a), r(s,a,s’), γ)

Algorithm: 
- Initialize q*(s)=0 for all s,a

- Repeat until convergence:

- For each s in state space: 

- For each a in action space: 

Very simple algorithm, but converges on the optimal value function q*(s,a)
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Input: an MDP (p(s’|s,a), r(s,a,s’), γ)

Algorithm: 
- Initialize q*(s)=0 for all s,a

- Repeat until convergence:

- For each s in state space: 

- For each a in action space: 

Very simple algorithm, but converges on the optimal value function q*(s,a)
[directly have optimal policy by acting greedy with respect to q*(s,a)]

Value Iteration (DP) for q*(s,a)
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MDP

Bellman Optimality Equation

Value Iteration: Example



Go Out Study

Home 0.0 0.0

Bar 0.0 0.0

Uni 0.0 0.0

Fail exam 0.0 0.0

Pass exam 0.0 0.0

q*(s,a) solution table MDP

Bellman Optimality Equation

Value Iteration: Example



I have completed the first full sweep

Go Out Study

Home 2.0 -1.0

Bar 0.0 0.0

Uni 2.0 8.0

Fail exam 0.0 0.0

Pass exam 0.0 0.0

q*(s,a) solution table MDP

Bellman Optimality Equation

Value Iteration: Example



Q: Update q*(Home, Study)

Go Out Study

Home 2.0 -1.0

Bar 0.0 0.0

Uni 2.0 8.0

Fail exam 0.0 0.0

Pass exam 0.0 0.0

q*(s,a) solution table MDP

Bellman Optimality Equation
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Q: Update q*(Home, Study)
A: Always end up at Uni

Go Out Study

Home 2.0 -1.0

Bar 0.0 0.0

Uni 2.0 8.0

Fail exam 0.0 0.0

Pass exam 0.0 0.0

q*(s,a) solution table MDP

Bellman Optimality Equation
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Q: Update q*(Home, Study)
A: Always end up at Uni

Immediate reward of -1.0

Go Out Study

Home 2.0 -1.0

Bar 0.0 0.0

Uni 2.0 8.0

Fail exam 0.0 0.0

Pass exam 0.0 0.0

q*(s,a) solution table MDP

Bellman Optimality Equation

Value Iteration: Example



Q: Update q*(Home, Study)
A: Always end up at Uni

Immediate reward of -1.0
Best next action is Study

Go Out Study

Home 2.0 -1.0

Bar 0.0 0.0

Uni 2.0 8.0

Fail exam 0.0 0.0

Pass exam 0.0 0.0

q*(s,a) solution table MDP

Bellman Optimality Equation

Value Iteration: Example



Q: Update q*(Home, Study)
A: Always end up at Uni

Immediate reward of -1.0
Best next action is Study
-1.0 + 1.0 · max(2.0,8.0) = 7.0

Go Out Study

Home 2.0 -1.0

Bar 0.0 0.0

Uni 2.0 8.0

Fail exam 0.0 0.0

Pass exam 0.0 0.0

q*(s,a) solution table MDP

Bellman Optimality Equation
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Q: Update q*(Home, Study)
A: Always end up at Uni

Immediate reward of -1.0
Best next action is Study
-1.0 + 1.0 · max(2.0,8.0) = 7.0

Go Out Study

Home 2.0 7.0

Bar 0.0 0.0

Uni 2.0 8.0

Fail exam 0.0 0.0

Pass exam 0.0 0.0

q*(s,a) solution table MDP

Bellman Optimality Equation

Value Iteration: Example



Update next state-action, etc. 

Go Out Study

Home 2.0 7.0

Bar 0.0 0.0

Uni 2.0 8.0

Fail exam 0.0 0.0

Pass exam 0.0 0.0

q*(s,a) solution table MDP

Bellman Optimality Equation

Value Iteration: Example
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Generalized Policy Iteration

We now have all the ingredients to specify the general scheme of MDP solution algorithms 
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Policy Improvement: Compute an greedy improved policy from the obtained value

Iterating these 
two procedures 
will converge on 
the optimal value 

function and 
policy
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Generalized Policy Iteration
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Policy Iteration
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We already have all the ingredients to implement generalized policy iteration
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We already have all the ingredients to implement generalized policy iteration

‘Policy Iteration”
Converges on the optimal value function and policy

Policy Iteration (DP)

Dynamic Programming on 
Bellman Equation (Sec. II)

Greedy policy improvement (Sec. III)



What if we only do one sweep of policy evaluation (instead of until convergence)

Special trick

Dynamic Programming on 
Bellman Equation (Sec. II)

Greedy policy improvement (Sec. III)



What if we only do one sweep of policy evaluation (instead of until convergence)

Special trick

One sweep
Dynamic Programming on 
Bellman Equation (Sec. II)

Greedy policy improvement (Sec. III)



Repeat until convergence: 
1. Policy evaluation (one sweep)

2. Policy improvement

Special trick



Repeat until convergence: 
1. Policy evaluation (one sweep)

2. Policy improvement

Can write both updates in a single equation
(verify this at home)

Special trick



Repeat until convergence: 

Special trick



Repeat until convergence: 

= Bellman Optimality Equation

Special trick



Repeat until convergence: 

Value Iteration (DP)



Repeat until convergence: 

Value iteration (Dynamic Programming on the Bellman Optimality Equation, Sec. IVb) 

is a

special case of generalized policy iteration with a single sweep of policy evaluation

Value Iteration (DP)



Summary



Can implement generalized policy iteration with dynamic programming in two ways: 
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Can implement generalized policy iteration with dynamic programming in two ways: 

1. Policy Iteration: 
a. Policy evaluation on Bellman Equation (until convergence)
b. Greedy policy improvement

2. Value iteration: 
a. Policy evaluation on Bellman Equation (single sweep)
b. Greedy policy improvement

Summary



Can implement generalized policy iteration with dynamic programming in two ways: 

1. Policy Iteration: 
a. Policy evaluation on Bellman Equation (until convergence)
b. Greedy policy improvement

2. Value iteration: 
a. Policy evaluation on Bellman Equation (single sweep)
b. Greedy policy improvement

Summary

Reduces to DP on Bellman 
Optimality Equation
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- The real-world also falls in this category



Next Block

- Dynamic Programming requires a (descriptive) model of the MDP: p(s’|s,a), r(s,a,s’)

- In most real-world tasks these are hard to obtain

- Instead we do often have a simulator: an environment in which we can sample traces 
from some start state

- The real-world also falls in this category

- We can still learn good policies and value functions from sampled traces

- Known as reinforcement learning



At Home (read)



At Home (read)

- Sutton & Barto Chapter 4

- Lecture slides & notes

http://incompleteideas.net
/book/RLbook2020.pdf

http://incompleteideas.net/book/RLbook2020.pdf
http://incompleteideas.net/book/RLbook2020.pdf
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expectation over dynamics (Bellman 
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a. Optimal value function no longer trivial 
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At Home (by hand)

1. Draw your own MDP without loops

2. Compute the optimal policy for your MDP
a. Work backwards from terminal states
b. Update with max over actions, 

expectation over dynamics (Bellman 
Optimality Equation)

3. Extend your MDP to include loops 
a. Optimal value function no longer trivial 

to compute

4. Make a rough guess for the state(-action) 
value function



At Home (code)
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Go to Colab: http://tiny.cc/ntbjvz

Work through the notebook examples of dynamic 
programming (policy evaluation, value iteration, policy 
iteration)
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Go to Colab: http://tiny.cc/ntbjvz

Work through the notebook examples of dynamic 
programming (policy evaluation, value iteration, policy 
iteration)

Implement your designed MDP with loops:
- Run value/policy iteration on it. 
- How many iterations do you need till convergence?
- How close was your guessed value function? 

At Home (code)

http://tiny.cc/ntbjvz


Questions?


