
Dynamic Programming

for Markov Decision Processes

Thomas Moerland

Leiden University

Last Week: Value function

The average cumulative reward we get from a certain state/action for a given policy

Last Week: Value function

The average cumulative reward we get from a certain state/action for a given policy

- Each policy π has its own value function.

Last Week: Value function

The average cumulative reward we get from a certain state/action for a given policy

- Each policy π has its own value function.

- Defined for states vπ(s) and state-actions qπ(s,a)

Last Week: Value function

The average cumulative reward we get from a certain state/action for a given policy

- Each policy π has its own value function.

- Defined for states vπ(s) and state-actions qπ(s,a)

- There is only one optimal value function v*(s) / q*(s,a)

Last Week: Value function

The average cumulative reward we get from a certain state/action for a given policy

- Each policy π has its own value function.

- Defined for states vπ(s) and state-actions qπ(s,a)

- There is only one optimal value function v*(s) / q*(s,a)

- We can get π*(a|s) from v*(s) / q*(s,a) by acting greedily with respect to it (selecting the
action with the highest value)

Last Week: Value function

Today

Value function
vπ(s) ← →qπ(s,a)

Policy
π(a|s)

Today

Value function
vπ(s) ← →qπ(s,a)

Policy
π(a|s)

I

Today

Discuss relations
between values at

different state(-actions)
[incl. recursion)

Value function
vπ(s) ← →qπ(s,a)

Policy
π(a|s)

I

II

Today
Policy evaluation:

Compute the value of policy

Value function
vπ(s) ← →qπ(s,a)

Policy
π(a|s)

I

II

III

Today

Implicit policies & Policy Improvement:
Define a new policy from a value function

Value function
vπ(s) ← →qπ(s,a)

Policy
π(a|s)

I

II

III

IV

Today Generalized Policy Iteration:
Iterate both procedures to find the optimal value & policy

Overview

I. Value relations
a. Relation between v(s) and q(s,a) v(s) to q(s,a) & q(s,a) to v(s)
b. Bellman Equation v(s) to v(s’) & q(s) to q(s’)

Overview

I. Value relations
a. Relation between v(s) and q(s,a) v(s) to q(s,a) & q(s,a) to v(s)
b. Bellman Equation v(s) to v(s’) & q(s) to q(s’)

II. Policy Evaluation (DP) π to vπ(s)

Overview

I. Value relations
a. Relation between v(s) and q(s,a) v(s) to q(s,a) & q(s,a) to v(s)
b. Bellman Equation v(s) to v(s’) & q(s) to q(s’)

II. Policy Evaluation (DP) π to vπ(s)

III. Implicit policies v(s)/q(s,a) to new π

Overview

I. Value relations
a. Relation between v(s) and q(s,a) v(s) to q(s,a) & q(s,a) to v(s)
b. Bellman Equation v(s) to v(s’) & q(s) to q(s’)

II. Policy Evaluation (DP) π to vπ(s)

III. Implicit policies v(s)/q(s,a) to new π

IV. Finding the optimal value function & policy (v*, q*, π*)
a. Bellman Optimality Equation v*(s’) to v*(s) & q*(s,a) to q*(s’,a’)
b. Value Iteration (DP)
c. Generalized Policy Iteration
d. Policy Iteration (DP)

Overview

Part I

Value relations

Part Ia

Relation between v(s) and q(s,a)

Relation between v(s) to q(s,a)

The state value v(s) and state-action value q(s,a) represent

the same underlying function at different points

Relation between v(s) to q(s,a)

The state value v(s) and state-action value q(s,a) represent

the same underlying function at different points

They can be rewritten into eachother!

Relation between v(s) to q(s,a)

The value of terminal states is by definition 0.0

v=0 v=0

v=0

Question: What is q(Uni, Study)?

v=0 v=0

v=0

q=?

Question: What is q(Uni, Study)?
Answer: 10% of times we Fail Exam for r=-10 and v(s’)=0 from next state,

v=0 v=0

v=0

q=?

Question: What is q(Uni, Study)?
Answer: 10% of times we Fail Exam for r=-10 and v(s’)=0 from next state,

90% of times we Pass Exam for r= 10 and v(s’)=0 from next state

v=0 v=0

v=0

q=?

Question: What is q(Uni, Study)?
Answer: 10% of times we Fail Exam for r=-10 and v(s’)=0 from next state,

90% of times we Pass Exam for r= 10 and v(s’)=0 from next state
q(Uni,Study) = 0.1 · (10 + 0) + 0.9 · (10 + 0) = 8.0

v=0 v=0

v=0

q=8.0

Question: What is q(Uni, Study)?
Answer: 10% of times we Fail Exam for r=-10 and v(s’)=0 from next state,

90% of times we Pass Exam for r= 10 and v(s’)=0 from next state
q(Uni,Study) = 0.1 · (10 + 0) + 0.9 · (10 + 0) = 8.0

v=0 v=0

v=0

q=8.0

To go from v(s’) to q(s,a)
we need to average over
the transition probabilities

From v(s) to q(s,a)

To get q(s,a) we weight the reward plus next state value v(s’) by their transition probabilities

From v(s) to q(s,a)

To get q(s,a) we weight the reward plus next state value v(s’) by their transition probabilities

From v(s) to q(s,a)

To get q(s,a) we weight the reward plus next state value v(s’) by their transition probabilities

From v(s) to q(s,a)

To get q(s,a) we weight the reward plus next state value v(s’) by their transition probabilities

From v(s) to q(s,a)

‘Back-up diagram’:

Visual illustration of a
back-up formula

To get q(s,a) we weight the reward plus next state value v(s’) by their transition probabilities

From v(s) to q(s,a)

For each possible next state
compute the reward plus next

state value

To get q(s,a) we weight the reward plus next state value v(s’) by their transition probabilities

From v(s) to q(s,a)

Average these according to their
transition probabilities

To get q(s,a) we weight the reward plus next state value v(s’) by their transition probabilities

(requirement: transition probabilities, rewards, discount γ)

From v(s) to q(s,a)

v=0 v=0

v=0

q=8.0

q(Uni,Go Out) = 2.0 since we always get r=2.0 and terminate in the Bar

v=0 v=0

v=0

q=8.0 q=2.0

Question: But what is v(Uni)? (How do we go from q(s,a) to v(s)...)

v=0 v=0

v=0

q=8.0 q=2.0

v=?

Question: But what is v(Uni)? (How do we go from q(s,a) to v(s)...)
Answer: Depends on our own policy!

v=0 v=0

v=0

q=8.0 q=2.0

v=?

Question: But what is v(Uni) under a random policy?

v=0 v=0

v=0

q=8.0 q=2.0

v=?

Question: But what is v(Uni) under a random policy?
Answer: 50% of times we Go Out for an expected return of 2.0

50% of times we Study for an expected return of 8.0
v(Uni) = 0.5 · 2.0 + 0.5 · 8.0 = 5.0

v=0 v=0

v=0

q=8.0 q=2.0

v=5.0

To go from q(s,a) to v(s)
we need to average over
our policy probabilities

From q(s,a) to v(s)

To get v(s) we weight the q(s,a) of each available action by its selection probability

From q(s,a) to v(s)

To get v(s) we weight the q(s,a) of each available action by its selection probability

From q(s,a) to v(s)

To get v(s) we weight the q(s,a) of each available action by its selection probability

From q(s,a) to v(s)

To get v(s) we weight the q(s,a) of each available action by its selection probability

(requirement: policy probabilities)

From q(s,a) to v(s)

To get v(s) we weight the q(s,a) of each available action by its selection probability

(requirement: policy probabilities)

From q(s,a) to v(s)

Take the state-action
value of each

available action…

To get v(s) we weight the q(s,a) of each available action by its selection probability

(requirement: policy probabilities)

From q(s,a) to v(s)

…and reweight them
according to their
policy probability

Summary

Summary

Can write q(s,a)
as a function of

v(s’)

Summary

Can write q(s,a)
as a function of

v(s’)

Can write v(s)
as function of

q(s,a)

Part Ib

Bellman Equation

Can combine
both steps to
write v(s) as a

function of the
next state
values v(s’)

Bellman Equation for v(s)

Bellman Equation for v(s)

Bellman Equation for v(s)

The value of a state is equal to

Bellman Equation for v(s)

The value of a state is equal to the average over all action probabilities

Bellman Equation for v(s)

The value of a state is equal to the average over all action probabilities of each average over
the resulting transition probabilities

Bellman Equation for v(s)

The value of a state is equal to the average over all action probabilities of each average over
the resulting transition probabilities of the reward plus next state value of that transition

Bellman Equation for v(s)

Recursive

The Bellman Equation is recursive

Every state value can be written as a function of the values at states that may follow it

Recursive

System of equations

System of equations

vπ(s=1) = …
vπ(s=2) = …
vπ(s=3) = …
vπ(s=4) = …
vπ(s=5) = …

System of equations

vπ(s=1) = …
vπ(s=2) = …
vπ(s=3) = …
vπ(s=4) = …
vπ(s=5) = …

In each equation you plug in the correct transition
probabilities and rewards from that state

- The Bellman Equation specifies a system of (linear) equations

System of equations

vπ(s=1) = …
vπ(s=2) = …
vπ(s=3) = …
vπ(s=4) = …
vπ(s=5) = …

- The Bellman Equation specifies a system of (linear) equations

- We can write out one equation for each state (|S| in total)

System of equations

vπ(s=1) = …
vπ(s=2) = …
vπ(s=3) = …
vπ(s=4) = …
vπ(s=5) = …

- The Bellman Equation specifies a system of (linear) equations

- We can write out one equation for each state (|S| in total)

- The v(s) values of each state are the unknowns (|S| unknowns)

System of equations

vπ(s=1) = …
vπ(s=2) = …
vπ(s=3) = …
vπ(s=4) = …
vπ(s=5) = …

We can of course also
write a Bellman equation

for state-action values
q(s,a)

Bellman Equation for q(s,a)

Bellman Equation for q(s,a)

Bellman Equation for q(s,a)

Same equation

Bellman Equation for q(s,a)

Same equation, but we now first sum over transition probabilities

Bellman Equation for q(s,a)

Same equation, but we now first sum over transition probabilities, and then over the action
probabilities

Bellman Equation for q(s,a)

Bellman Equation from building blocks

Bellman Equation from building blocks

v(s) from q(s,a)

Bellman Equation from building blocks

v(s) from q(s,a) q(s,a) from v(s)

Bellman Equation from building blocks

Bellman Equation from building blocks

Substitute q(s,a) to get the Bellman Equation for state values v(s)

Bellman Equation from building blocks

Substitute v(s) to get the Bellman Equation for state-action values q(s,a)

Substitute q(s,a) to get the Bellman Equation for state values v(s)

Write this out yourself at home!

Summary

Summary

Can write v(s) as a
function of v(s’)

Summary

Can write v(s) as a
function of v(s’)

And q(s,a) as a
function of q(s’,a’)

Part II

Policy Evaluation

Policy Evaluation

Value function
vπ(s) / qπ(s,a)

Policy
π(a|s)

Policy Evaluation

Compute the value function of a given policy

Value function
vπ(s) / qπ(s,a)

Policy
π(a|s)

Policy Evaluation

Policy Evaluation

Compute the value function of a given policy

We can efficiently compute this through Dynamic Programming on the Bellman Equation

Value function
vπ(s) / qπ(s,a)

Policy
π(a|s)

Policy Evaluation

Policy Evaluation

Dynamic Programming (DP)

General concept:

Dynamic Programming (DP)

General concept:

- Break a large problem into smaller subproblems

Dynamic Programming (DP)

General concept:

- Break a large problem into smaller subproblems

- Efficiently store and reuse intermediate results

Dynamic Programming (DP)

General concept:

- Break a large problem into smaller subproblems

- Efficiently store and reuse intermediate results

- Repeatedly solving the small problem solves the big problem

Dynamic Programming (DP)

Dynamic Programming (DP)

In the context of Markov Decision Processes:

Dynamic Programming (DP)

In the context of Markov Decision Processes:

- Small subproblem given by the Bellman Equation

Dynamic Programming (DP)

In the context of Markov Decision Processes:

- Small subproblem given by the Bellman Equation

- Repeatedly solving it gives us the Value Function

Dynamic Programming (DP)

Policy Evaluation through DP

Compute the value of a given policy

Policy Evaluation through DP

Compute the value of a given policy

Input: a policy π(a|s), an MDP (p(s’|s,a), r(s,a,s’), γ)

Policy Evaluation through DP

Compute the value of a given policy

Input: a policy π(a|s), an MDP (p(s’|s,a), r(s,a,s’), γ)

Algorithm:

Policy Evaluation through DP

Compute the value of a given policy

Input: a policy π(a|s), an MDP (p(s’|s,a), r(s,a,s’), γ)

Algorithm:
- Initialize v(s)=0 for all s

Policy Evaluation through DP

Compute the value of a given policy

Input: a policy π(a|s), an MDP (p(s’|s,a), r(s,a,s’), γ)

Algorithm:
- Initialize v(s)=0 for all s
- Sweep through all states, updating according to Bellman Equation:

Policy Evaluation through DP

Compute the value of a given policy

Input: a policy π(a|s), an MDP (p(s’|s,a), r(s,a,s’), γ)

Algorithm:
- Initialize v(s)=0 for all s
- Sweep through all states, updating according to Bellman Equation:

Policy Evaluation through DP

Compute the value of a given policy

Input: a policy π(a|s), an MDP (p(s’|s,a), r(s,a,s’), γ)

Algorithm:
- Initialize v(s)=0 for all s
- Sweep through all states, updating according to Bellman Equation:

- Until v(s) converges

Policy Evaluation through DP

Policy Evaluation through DP: Example

Policy Evaluation through DP: Example

MDP

Policy Evaluation through DP: Example

MDP

Bellman Equation

Policy Evaluation through DP: Example

s v(s)

Home 0.0

Bar 0.0

Uni 0.0

Fail exam 0.0

Pass exam 0.0

Solution table MDP

Bellman Equation

Assume random policy

Policy Evaluation through DP: Example

s v(s)

Home 0.0

Bar 0.0

Uni 0.0

Fail exam 0.0

Pass exam 0.0

Solution table MDP

Bellman Equation

Assume random policy
Q: What is the update of v(Home)?

Policy Evaluation through DP: Example

s v(s)

Home 0.0

Bar 0.0

Uni 0.0

Fail exam 0.0

Pass exam 0.0

Solution table MDP

Bellman Equation

Assume random policy
Q: What is the update of v(Home)?
A: 0.5 · (2.0 + 0) + 0.5 · (-1.0 + 0.0) = 0.5

Policy Evaluation through DP: Example

s v(s)

Home 0.0

Bar 0.0

Uni 0.0

Fail exam 0.0

Pass exam 0.0

Solution table MDP

Bellman Equation

Assume random policy
Q: What is the update of v(Home)?
A: 0.5 · (2.0 + 0) + 0.5 · (-1.0 + 0.0) = 0.5

Policy Evaluation through DP: Example

s v(s)

Home 0.5

Bar 0.0

Uni 0.0

Fail exam 0.0

Pass exam 0.0

Solution table MDP

Bellman Equation

Assume random policy
Q: What is the update of v(Bar)?

Policy Evaluation through DP: Example

s v(s)

Home 0.5

Bar 0.0

Uni 0.0

Fail exam 0.0

Pass exam 0.0

Solution table MDP

Bellman Equation

Assume random policy
Q: What is the update of v(Bar)?
A: 0.0 (terminal)

Policy Evaluation through DP: Example

s v(s)

Home 0.5

Bar 0.0

Uni 0.0

Fail exam 0.0

Pass exam 0.0

Solution table MDP

Bellman Equation

Assume random policy
Q: What is the update of v(Uni)?

Policy Evaluation through DP: Example

s v(s)

Home 0.5

Bar 0.0

Uni 0.0

Fail exam 0.0

Pass exam 0.0

Solution table MDP

Bellman Equation

Assume random policy
Q: What is the update of v(Uni)?
A: 0.5 · (2.0 + 0) +

0.5 · (0.1 · (-10 + 0.0) + 0.9 · (10 + 0))
= 5.0

Policy Evaluation through DP: Example

s v(s)

Home 0.5

Bar 0.0

Uni 0.0

Fail exam 0.0

Pass exam 0.0

Solution table MDP

Bellman Equation

Assume random policy
Q: What is the update of v(Uni)?
A: 0.5 · (2.0 + 0) +

0.5 · (0.1 · (-10 + 0.0) + 0.9 · (10 + 0))
= 5.0

Policy Evaluation through DP: Example

s v(s)

Home 0.5

Bar 0.0

Uni 5.0

Fail exam 0.0

Pass exam 0.0

Solution table MDP

Bellman Equation

Fail exam is terminal

Policy Evaluation through DP: Example

s v(s)

Home 0.5

Bar 0.0

Uni 5.0

Fail exam 0.0

Pass exam 0.0

Solution table MDP

Bellman Equation

Pass exam is terminal

Policy Evaluation through DP: Example

s v(s)

Home 0.5

Bar 0.0

Uni 5.0

Fail exam 0.0

Pass exam 0.0

Solution table MDP

Bellman Equation

Repeat!

Policy Evaluation through DP: Example

s v(s)

Home 0.5

Bar 0.0

Uni 5.0

Fail exam 0.0

Pass exam 0.0

Solution table MDP

Bellman Equation

Assume random policy
Q: What is the update of v(Home)?
A:

Policy Evaluation through DP: Example

s v(s)

Home 0.5

Bar 0.0

Uni 5.0

Fail exam 0.0

Pass exam 0.0

Solution table MDP

Bellman Equation

Assume random policy
Q: What is the update of v(Home)?
A: 0.5 · (2.0 + 0) + 0.5 · (-1.0 + 5.0) = 3.0

Policy Evaluation through DP: Example

s v(s)

Home 0.5

Bar 0.0

Uni 5.0

Fail exam 0.0

Pass exam 0.0

Solution table MDP

Bellman Equation

Assume random policy
Q: What is the update of v(Home)?
A: 0.5 · (2.0 + 0) + 0.5 · (-1.0 + 5.0) = 3.0

Policy Evaluation through DP: Example

s v(s)

Home 3.0

Bar 0.0

Uni 5.0

Fail exam 0.0

Pass exam 0.0

Solution table MDP

Bellman Equation

Repeat until convergence
(i.e. v(s) estimates stabilize)

= result is true vπ(s)

Policy Evaluation through DP: Example

s v(s)

Home 0.5

Bar 0.0

Uni 5.0

Fail exam 0.0

Pass exam 0.0

Solution table MDP

Bellman Equation

Value function
vπ(s) / qπ(s,a)

Policy
π(a|s)

Summary

Value function
vπ(s) / qπ(s,a)

Policy
π(a|s)

Summary
Policy Evaluation:

compute value function of a given policy

We can efficiently compute the value of a given policy through Dynamic Programming,

repeatedly solving the Bellman Equation

Value function
vπ(s) / qπ(s,a)

Policy
π(a|s)

Summary
Policy Evaluation:

compute value function of a given policy

Part III

Implicit Policies

From v(s) / q(s,a) to new π

Value function
vπ(s) / qπ(s,a)

Policy
π(a|s)

From v(s) / q(s,a) to new π

Every policy induces a value function

Value function
vπ(s) / qπ(s,a)

Policy
π(a|s)

From v(s) / q(s,a) to new π

Every policy induces a value function

Can we also use a given value function to define a new policy?

Explicit policy

Directly store the policy probabilities

Explicit policy

Directly store the policy probabilities

Explicit policy

Implicit policy

Only store value function, define policy as function of the value estimates

Implicit policy

Only store value function, define policy as function of the value estimates

Implicit policy

Only store value function, define policy as function f() of the value estimates

π(a|s) = f(v) or f(q)

Implicit policy

Only store value function, define policy as function of the value estimates

π(a|s) = f(q/v)

Implicit policy

f() can take many forms:
- greedy (DP)
- Ɛ-greedy (RL)
- Boltzmann (RL)
- etc.

Only store value function, define policy as function of the value estimates

π(a|s) = f(q/v)

Implicit policy

f() can take many forms:
- greedy (DP)
- Ɛ-greedy (RL)
- Boltzmann (RL)
- etc.

Example: Greedy policy

‘Always select the action with the highest state-action value estimate’

Example: Greedy policy

‘Always select the action with the highest state-action value estimate’

For q(s,a):

Example: Greedy policy

‘Always select the action with the highest state-action value estimate’

For q(s,a): Easy to compute the greedy policy

Example: Greedy policy

‘Always select the action with the highest state-action value estimate’

For q(s,a): Easy to compute the greedy policy (main benefit of state-action values)

Example: Greedy policy

‘Always select the action with the highest state-action value estimate’

For q(s,a): Easy to compute the greedy policy (main benefit of state-action values)

Example: Greedy policy

‘Always select the action with the highest state-action value estimate’

For q(s,a): Easy to compute the greedy policy (main benefit of state-action values)

Example: Greedy policy

Question: What is πgreedy(Uni)?

‘Always select the action with the highest state-action value estimate’

For q(s,a): Easy to compute the greedy policy (main benefit of state-action values)

Example: Greedy policy

Question: What is πgreedy(Uni)?
Answer: Study

‘Always select the action with the highest state-action value estimate’

For q(s,a): Easy to compute the greedy policy (main benefit of state-action values)

For v(s):

Example: Greedy policy

‘Always select the action with the highest state-action value estimate’

For q(s,a): Easy to compute the greedy policy (main benefit of state-action values)

For v(s): More complicated, for each action need to go over the dynamics again

Example: Greedy policy

‘Always select the action with the highest state-action value estimate’

For q(s,a): Easy to compute the greedy policy (main benefit of state-action values)

For v(s): More complicated, for each action need to go over the dynamics again

Example: Greedy policy

‘Always select the action with the highest state-action value estimate’

For q(s,a): Easy to compute the greedy policy (main benefit of state-action values)

For v(s): More complicated, for each action need to go over the dynamics again
(downside of state values - less useful for action selection)

Example: Greedy policy

The greedy/max policy is a form of policy improvement

Policy Improvement

The greedy/max policy is a form of policy improvement

If we take a policy π

Policy Improvement

The greedy/max policy is a form of policy improvement

If we take a policy π

compute its true value function qπ(s,a)

Policy Improvement

The greedy/max policy is a form of policy improvement

If we take a policy π

compute its true value function qπ(s,a)

and then compute a greedy new policy πnew = greedy(qπ(s,a))

Policy Improvement

The greedy/max policy is a form of policy improvement

If we take a policy π

compute its true value function qπ(s,a)

and then compute a greedy new policy πnew = greedy(qπ(s,a))

Then πnew is guaranteed to be a better policy then π

Policy Improvement

Summary

Value function
vπ(s) / qπ(s,a)

Policy
π(a|s)

Summary

Every policy induces a value function

Value function
vπ(s) / qπ(s,a)

Policy
π(a|s)

Summary

Every policy induces a value function

Can define new policy from a value function (‘Implicit policy’)

Value function
vπ(s) / qπ(s,a)

Policy
π(a|s)

Summary

Every policy induces a value function

Can define new policy from a value function (‘Implicit policy’)
The greedy policy over a true value function always improves (‘Policy Improvement’)

Part IV

Finding v*, q* and π*

Part IVa

Bellman Optimality Equation

We are of course most interested in the optimal value function v*(s)/q*(s,a)

and associated optimal policy π*(a|s)

We are of course most interested in the optimal value function v*(s)/q*(s,a)

and associated optimal policy π*(a|s)

But what changes to our back-up equations in this case?

Terminal states values are still 0.0 under the optimal policy

v*=0 v*=0

v*=0

To compute q*(s,a) from v*(s) we still average over the transition dynamics

v*=0 v*=0

v*=0

q*=8.0 q*=2.0

Question: But what is v*(Uni)? (i.e., how do we go from q* to v* under the optimal policy)

v*=0 v*=0

v*=0

q*=8.0 q*=2.0

v*=?

Question: But what is v*(Uni)? (i.e., how do we go from q* to v* under the optimal policy)
Answer: v*(Uni) = 8.0

Under the optimal policy we greedily choose the action with the highest value!

v*=0 v*=0

v*=0

q*=8.0 q*=2.0

v*=8.0

Optimal policy

Key insight:

The optimal policy is a greedy/max policy with respect to the optimal state-action values

(‘rational agent’)

Optimal policy

Key insight:

The optimal policy is a greedy/max policy with respect to the optimal state-action values

(‘rational agent’)

Optimal policy

Key insight:

The optimal policy is a greedy/max policy with respect to the optimal state-action values

(‘rational agent’)

For the optimal policy the expectation over policy probabilities changes into a maximization

Optimal policy

Key insight:

The optimal policy is a greedy/max policy with respect to the optimal state-action values

(‘rational agent’)

Optimal policy

q*=2.0 q*=6.0 q*=-4.0

Key insight:

The optimal policy is a greedy/max policy with respect to the optimal state-action values

(‘rational agent’)

Optimal policy

q*=2.0 q*=6.0 q*=-4.0

π*(a|s)= [0.0, 0.0, 1.0]

Key insight:

The optimal policy is a greedy/max policy with respect to the optimal state-action values

(‘rational agent’)

If we find the optimal values q* we also know the optimal policy
(just act greedily with respect to the values)

Optimal policy

q*=2.0 q*=6.0 q*=-4.0

π*(a|s)= [0.0, 0.0, 1.0]

Bellman Optimality Equation

We can use this insight to write a specific Bellman Equation for the optimal value function

Bellman Optimality Equation

Bellman Optimality Equation for v*(s)

Bellman Optimality Equation for v*(s)

Bellman Optimality Equation for v*(s)

Bellman Optimality Equation for v*(s)

Only the max over action changed

This (system of) equations is only satisfied by the optimal state value function v*(s,a)

Bellman Optimality Equation for v*(s)

Only the max over action changed

Bellman Optimality Equation: Illustration

Bellman Optimality Equation: Illustration

Bellman Optimality Equation: Illustration

Q: How would you compute v*(Uni)?

Bellman Optimality Equation: Illustration

Best action is Study

Bellman Optimality Equation: Illustration

Best action is Study
which may (10-90%) lead to two next states

Bellman Optimality Equation: Illustration

Best action is Study
which may (10-90%) lead to two next states
10% gives reward of -10 plus nothing after
90% gives reward of +10 plus nothing after

Bellman Optimality Equation: Illustration

Best action is Study
which may (10-90%) lead to two next states
10% gives reward of -10 plus nothing after
90% gives reward of +10 plus nothing after

Bellman Optimality Equation is very intuitive:
we used it (without knowing it as an equation) at the very start of the previous lecture

Bellman Optimality Equation: Illustration

Bellman Optimality Equation for q*(s,a)

Bellman Optimality Equation for q*(s,a)

Bellman Optimality Equation for q*(s,a)

Bellman Optimality Equation for q*(s,a)

Again only the max over
action changed

Bellman Optimality Equation for q*(s,a)

This (system of) equations is only satisfied by the optimal state-action value function q*(s,a)

Part IVb

Value Iteration

Value Iteration

Value Iteration

If we perform Dynamic Programming (as before) but on the Bellman Optimality Equation,

then we converge on the optimal state(-action) value function!

Value Iteration (DP) for q*(s,a)

Input: an MDP (p(s’|s,a), r(s,a,s’), γ)

Value Iteration (DP) for q*(s,a)

Input: an MDP (p(s’|s,a), r(s,a,s’), γ)

Algorithm:
- Initialize q*(s)=0 for all s,a

Value Iteration (DP) for q*(s,a)

Input: an MDP (p(s’|s,a), r(s,a,s’), γ)

Algorithm:
- Initialize q*(s)=0 for all s,a

- Repeat until convergence:

Value Iteration (DP) for q*(s,a)

Input: an MDP (p(s’|s,a), r(s,a,s’), γ)

Algorithm:
- Initialize q*(s)=0 for all s,a

- Repeat until convergence:

- For each s in state space:

- For each a in action space:

Value Iteration (DP) for q*(s,a)

Input: an MDP (p(s’|s,a), r(s,a,s’), γ)

Algorithm:
- Initialize q*(s)=0 for all s,a

- Repeat until convergence:

- For each s in state space:

- For each a in action space:

Value Iteration (DP) for q*(s,a)

Input: an MDP (p(s’|s,a), r(s,a,s’), γ)

Algorithm:
- Initialize q*(s)=0 for all s,a

- Repeat until convergence:

- For each s in state space:

- For each a in action space:

Very simple algorithm, but converges on the optimal value function q*(s,a)

Value Iteration (DP) for q*(s,a)

Input: an MDP (p(s’|s,a), r(s,a,s’), γ)

Algorithm:
- Initialize q*(s)=0 for all s,a

- Repeat until convergence:

- For each s in state space:

- For each a in action space:

Very simple algorithm, but converges on the optimal value function q*(s,a)
[directly have optimal policy by acting greedy with respect to q*(s,a)]

Value Iteration (DP) for q*(s,a)

Value Iteration: Example

MDP

Value Iteration: Example

MDP

Bellman Optimality Equation

Value Iteration: Example

Go Out Study

Home 0.0 0.0

Bar 0.0 0.0

Uni 0.0 0.0

Fail exam 0.0 0.0

Pass exam 0.0 0.0

q*(s,a) solution table MDP

Bellman Optimality Equation

Value Iteration: Example

I have completed the first full sweep

Go Out Study

Home 2.0 -1.0

Bar 0.0 0.0

Uni 2.0 8.0

Fail exam 0.0 0.0

Pass exam 0.0 0.0

q*(s,a) solution table MDP

Bellman Optimality Equation

Value Iteration: Example

Q: Update q*(Home, Study)

Go Out Study

Home 2.0 -1.0

Bar 0.0 0.0

Uni 2.0 8.0

Fail exam 0.0 0.0

Pass exam 0.0 0.0

q*(s,a) solution table MDP

Bellman Optimality Equation

Value Iteration: Example

Q: Update q*(Home, Study)
A: Always end up at Uni

Go Out Study

Home 2.0 -1.0

Bar 0.0 0.0

Uni 2.0 8.0

Fail exam 0.0 0.0

Pass exam 0.0 0.0

q*(s,a) solution table MDP

Bellman Optimality Equation

Value Iteration: Example

Q: Update q*(Home, Study)
A: Always end up at Uni

Immediate reward of -1.0

Go Out Study

Home 2.0 -1.0

Bar 0.0 0.0

Uni 2.0 8.0

Fail exam 0.0 0.0

Pass exam 0.0 0.0

q*(s,a) solution table MDP

Bellman Optimality Equation

Value Iteration: Example

Q: Update q*(Home, Study)
A: Always end up at Uni

Immediate reward of -1.0
Best next action is Study

Go Out Study

Home 2.0 -1.0

Bar 0.0 0.0

Uni 2.0 8.0

Fail exam 0.0 0.0

Pass exam 0.0 0.0

q*(s,a) solution table MDP

Bellman Optimality Equation

Value Iteration: Example

Q: Update q*(Home, Study)
A: Always end up at Uni

Immediate reward of -1.0
Best next action is Study
-1.0 + 1.0 · max(2.0,8.0) = 7.0

Go Out Study

Home 2.0 -1.0

Bar 0.0 0.0

Uni 2.0 8.0

Fail exam 0.0 0.0

Pass exam 0.0 0.0

q*(s,a) solution table MDP

Bellman Optimality Equation

Value Iteration: Example

Q: Update q*(Home, Study)
A: Always end up at Uni

Immediate reward of -1.0
Best next action is Study
-1.0 + 1.0 · max(2.0,8.0) = 7.0

Go Out Study

Home 2.0 7.0

Bar 0.0 0.0

Uni 2.0 8.0

Fail exam 0.0 0.0

Pass exam 0.0 0.0

q*(s,a) solution table MDP

Bellman Optimality Equation

Value Iteration: Example

Update next state-action, etc.

Go Out Study

Home 2.0 7.0

Bar 0.0 0.0

Uni 2.0 8.0

Fail exam 0.0 0.0

Pass exam 0.0 0.0

q*(s,a) solution table MDP

Bellman Optimality Equation

Value Iteration: Example

Part IVc

Generalized Policy Iteration

Generalized Policy Iteration

Generalized Policy Iteration

We now have all the ingredients to specify the general scheme of MDP solution algorithms

Generalized Policy Iteration

Generalized Policy Iteration

Policy Evaluation: Compute the value function of a given policy

Generalized Policy Iteration

Policy Evaluation: Compute the value function of a given policy
Policy Improvement: Compute an greedy improved policy from the obtained value

Generalized Policy Iteration

Policy Evaluation: Compute the value function of a given policy
Policy Improvement: Compute an greedy improved policy from the obtained value

Iterating these
two procedures
will converge on
the optimal value

function and
policy

Iterating both procedures will converge on the optimal value function and policy

Generalized Policy Iteration

Iterating both procedures will converge on the optimal value function and policy

Generalized Policy Iteration

Part IVd

Policy Iteration

Policy Iteration (DP)

We already have all the ingredients to implement generalized policy iteration

Policy Iteration (DP)

We already have all the ingredients to implement generalized policy iteration

Policy Iteration (DP)

We already have all the ingredients to implement generalized policy iteration

Policy Iteration (DP)

Dynamic Programming on
Bellman Equation (Sec. II)

We already have all the ingredients to implement generalized policy iteration

Policy Iteration (DP)

Dynamic Programming on
Bellman Equation (Sec. II)

Greedy policy improvement (Sec. III)

We already have all the ingredients to implement generalized policy iteration

‘Policy Iteration”
Converges on the optimal value function and policy

Policy Iteration (DP)

Dynamic Programming on
Bellman Equation (Sec. II)

Greedy policy improvement (Sec. III)

What if we only do one sweep of policy evaluation (instead of until convergence)

Special trick

Dynamic Programming on
Bellman Equation (Sec. II)

Greedy policy improvement (Sec. III)

What if we only do one sweep of policy evaluation (instead of until convergence)

Special trick

One sweep
Dynamic Programming on
Bellman Equation (Sec. II)

Greedy policy improvement (Sec. III)

Repeat until convergence:
1. Policy evaluation (one sweep)

2. Policy improvement

Special trick

Repeat until convergence:
1. Policy evaluation (one sweep)

2. Policy improvement

Can write both updates in a single equation
(verify this at home)

Special trick

Repeat until convergence:

Special trick

Repeat until convergence:

= Bellman Optimality Equation

Special trick

Repeat until convergence:

Value Iteration (DP)

Repeat until convergence:

Value iteration (Dynamic Programming on the Bellman Optimality Equation, Sec. IVb)

is a

special case of generalized policy iteration with a single sweep of policy evaluation

Value Iteration (DP)

Summary

Can implement generalized policy iteration with dynamic programming in two ways:

Summary

Can implement generalized policy iteration with dynamic programming in two ways:

1. Policy Iteration:
a. Policy evaluation on Bellman Equation (until convergence)
b. Greedy policy improvement

Summary

Can implement generalized policy iteration with dynamic programming in two ways:

1. Policy Iteration:
a. Policy evaluation on Bellman Equation (until convergence)
b. Greedy policy improvement

2. Value iteration:
a. Policy evaluation on Bellman Equation (single sweep)
b. Greedy policy improvement

Summary

Can implement generalized policy iteration with dynamic programming in two ways:

1. Policy Iteration:
a. Policy evaluation on Bellman Equation (until convergence)
b. Greedy policy improvement

2. Value iteration:
a. Policy evaluation on Bellman Equation (single sweep)
b. Greedy policy improvement

Summary

Reduces to DP on Bellman
Optimality Equation

Next Block

Next Block

- Dynamic Programming requires a (descriptive) model of the MDP: p(s’|s,a), r(s,a,s’)

- In most real-world tasks these are hard to obtain

Next Block

- Dynamic Programming requires a (descriptive) model of the MDP: p(s’|s,a), r(s,a,s’)

- In most real-world tasks these are hard to obtain

- Instead we do often have a simulator: an environment in which we can sample traces
from some start state

- The real-world also falls in this category

Next Block

- Dynamic Programming requires a (descriptive) model of the MDP: p(s’|s,a), r(s,a,s’)

- In most real-world tasks these are hard to obtain

- Instead we do often have a simulator: an environment in which we can sample traces
from some start state

- The real-world also falls in this category

- We can still learn good policies and value functions from sampled traces

- Known as reinforcement learning

At Home (read)

At Home (read)

- Sutton & Barto Chapter 4

- Lecture slides & notes

http://incompleteideas.net
/book/RLbook2020.pdf

http://incompleteideas.net/book/RLbook2020.pdf
http://incompleteideas.net/book/RLbook2020.pdf

At Home (by hand)

At Home (by hand)

1. Draw your own MDP without loops

At Home (by hand)

1. Draw your own MDP without loops

2. Compute the optimal policy for your MDP
a. Work backwards from terminal states
b. Update with max over actions,

expectation over dynamics (Bellman
Optimality Equation)

At Home (by hand)

1. Draw your own MDP without loops

2. Compute the optimal policy for your MDP
a. Work backwards from terminal states
b. Update with max over actions,

expectation over dynamics (Bellman
Optimality Equation)

3. Extend your MDP to include loops
a. Optimal value function no longer trivial

to compute

At Home (by hand)

1. Draw your own MDP without loops

2. Compute the optimal policy for your MDP
a. Work backwards from terminal states
b. Update with max over actions,

expectation over dynamics (Bellman
Optimality Equation)

3. Extend your MDP to include loops
a. Optimal value function no longer trivial

to compute

4. Make a rough guess for the state(-action)
value function

At Home (code)

Go to Colab: http://tiny.cc/ntbjvz

At Home (code)

http://tiny.cc/ntbjvz

Go to Colab: http://tiny.cc/ntbjvz

Work through the notebook examples of dynamic
programming (policy evaluation, value iteration, policy
iteration)

At Home (code)

http://tiny.cc/ntbjvz

Go to Colab: http://tiny.cc/ntbjvz

Work through the notebook examples of dynamic
programming (policy evaluation, value iteration, policy
iteration)

Implement your designed MDP with loops:
- Run value/policy iteration on it.
- How many iterations do you need till convergence?
- How close was your guessed value function?

At Home (code)

http://tiny.cc/ntbjvz

Questions?

