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Bandits

One-step decision-making problem

Markov Decision Process

Sequential decision-making problem

Markov Decision Process
(actions influence what next state 

you see
-

makes the problem sequential: we 
may prefer a low instant reward if it 

gives us high long-term reward)

Bandit
(no state/state fixed)

Contextual bandit
(state changes action rewards)
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Many key successes of AI use this formulation…

…even ones that don’t seem sequential at first!
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Agent

Environment

action a
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s

reward
r

Find an action selection strategy…
(policy  π)

… that gets as much reward as possible!



Part II

Conceptual Example 
(High-level Overview)
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We are interested in the optimal value of a state (v*) and the optimal value of an action (q*)

“How much reward can we at best get from that state or action”
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Question: What is v*(Bar)?
Answer: 0.0

(terminal state so we can never get any additional reward)

Example: The Study MDP

q* = 2.0

v* = 0.0

v* = 0.0 v* = 0.0
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Question: What is q*(Uni, Study)? (Stochastic!)
Answer: 0.9*10 + 0.1 * (-10) = 8.0

(90% we pass the exam for reward +10, but 10% we fail and get reward -10)

Example: The Study MDP

q* = 2.0

v* = 0.0

q* = 2.0

v* = 0.0 v* = 0.0

q* = 8.0
We average 

over the 
environment 

dynamics
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Question: What is v*(Uni)? 
Answer: 8.0

(The best choice is to Study from Uni, which we already know has value 8.0)

Example: The Study MDP

q* = 2.0
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v* = 8.0

Markov Decision 
Process=

MAX

EXP

graph
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Answer: -1.0 + 8.0 = 7.0

(We get -1.0 for reaching the Uni, and can then at best get 8.0 afterwards)
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Question: What is v*(Home)? 
Answer: 7.0

(We can choose to Study, which will give an average total reward of 7.0)

Example: The Study MDP

q* = 2.0

v* = 0.0

q* = 2.0

v* = 0.0 v* = 0.0

q* = 8.0

v* = 8.0

q* = 7.0

v* = 7.0



Question: So what should you do at Home? 

Example: The Study MDP

q* = 2.0

v* = 0.0

q* = 2.0

v* = 0.0 v* = 0.0

q* = 8.0

v* = 8.0

q* = 7.0

v* = 7.0



Question: So what should you do at Home? 
Answer: Come to university!

Example: The Study MDP
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v* = 0.0 v* = 0.0
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v* = 8.0

q* = 7.0

v* = 7.0

Given the optimal q* values 
you know how to act
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Question: Imagine we act randomly instead of optimally. Which values will stay the same? 
Answer: Terminal states and actions leading to terminal states - don’t depend on our policy.

Example: The Study MDP

q = 2.0

v = 0.0

q = 2.0

v = 0.0 v = 0.0

q = 8.0

We now write v and q 
(without a star) since the 
values are not optimal
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Question: But what is v(Uni) under the random policy? 
Answer: 5.0

(Act random, so 50% of times Go Out for q=2.0, and 50% Study for q=8.0)

Example: The Study MDP
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Question: And q(Home, Study) under the random policy?  
Answer: 4.0

(get -1.0 for going to Uni, and then 5.0 from there)
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Question: So what is v(Home) under the random policy?  
Answer: 3.0

(50% of times Go Out for 2.0, 50% of times Study for 4.0)

Example: The Study MDP

q = 2.0

v = 0.0

q = 2.0

v = 0.0 v = 0.0

q = 8.0

We now computed the value 
function of the random policy:

every policy has its own 
associated value function

v = 5.0

q = 4.0

v = 3.0
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Question: Is it smart to act randomly from Home? 
Answer: No! 

We could optimally get 7.0 on average from Home, but random policy gives just 3.0!
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There is a recursive relation between the value estimates of states and actions
- Compute q from v and rewards by averaging over the environment stochasticity (EXP)
- Compute v from q depending on our own behaviour (for optimal: MAX)
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There is a recursive relation between the value estimates of states and actions
- Compute q from v and rewards by averaging over the environment stochasticity (EXP)
- Compute v from q depending on our own behaviour (for optimal: MAX)

MDP = MAX-EXP graph problem
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In the remainder of this lecture we will formalize these ideas, 

with the eventual goal to compute the optimal value function q*/v* for a given MDP, 

since we then directly know how to act optimally.
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Generic way to formally define a sequential decision-making problem. 

- Can handle stochastic environments (through a probabilistic transition function)

- Can trade-off multiple goals  (through a reward function) 

Markov Decision Process (MDP)



Let’s formulate our problem as an MDP!

Example: The Study MDP



An MDP consists of 5 elements

1. State space

2. Action space

3. Transition function

4. Reward function

5. Discount parameter

Markov Decision Process definition
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Intuition: What observations are possible

Type: A discrete or continuous set/space

Notation: 

Q: What is the state space of this MDP?

1. State space



Intuition: What observations are possible

Type: A discrete or continuous set/space

Notation: 

Q: What is the state space of this MDP?

A: {Home, Bar, Uni, Fail exam, Pass exam} 
(a discrete set of size 5)

1. State space
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Atomic

- Each state is a unique element

- No relation between states

- Example: s = 1

Main focus of this course

Atomic versus factorized states

Factorized

- State is a vector/matrix of numbers

- Relation/overlap between states

- Example: s = (64,0,3,1)



Atomic

- Each state is a unique element

- No relation between states

- Example: s = 1

Main focus of this course

Atomic versus factorized states

Factorized

- State is a vector/matrix of numbers

- Relation/overlap between states

- Example: s = (64,0,3,1)

Allows for approximation & generalisation
(e.g. deep learning)
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The cardinality of a state space grows exponentially in the dimensionality of the space
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The cardinality of a state space grows exponentially in the dimensionality of the space

The total number of possible unique states
(e.g., [0,0,0], [0,0,1], [0,0,2], [0,0,3], [0,1,0] etc.)

Curse of Dimensionality



The cardinality of a state space grows exponentially in the dimensionality of the space

The amount of elements in a single state
(e.g., s=[2, 8,-4] has dimensionality 3)
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The cardinality of a state space grows exponentially in the dimensionality of the space

Grows extremely fast!

Curse of Dimensionality
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- Each matrix element in (X,O, Empty)
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- Matrix representation of the board

- Each matrix element in (X,O, Empty)
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Tic-Tac-Toe state:

- Matrix representation of the board

- Each matrix element in (X,O, Empty)

The total size of a state space grows very fast when its dimensionality increases

Curse of Dimensionality: Illustration

Tic-Tac-Toe shape Dimensionality Cardinality Memory (float-32)

3 by 3 9 39 (=19.683) 77 KB

4 by 4 16 316 (~43 million) 164 MB

5 by 5 25 325 (~847 billion) 789 TB (!)



Tic-Tac-Toe state:

- Matrix representation of the board

- Each matrix element in (X,O, Empty)

The total size of a state space grows very fast when its dimensionality increases
i.e., tabular/atomic solutions only feasible in smaller problems

Curse of Dimensionality: Illustration

Tic-Tac-Toe shape Dimensionality Cardinality Memory (float-32)

3 by 3 9 39 (=19.683) 77 KB

4 by 4 16 316 (~43 million) 164 MB

5 by 5 25 325 (~847 billion) 789 TB (!)
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Intuition: What actions are possible

Type: A discrete or continuous set/space

Notation: 

Q: What is the action space of 
our Study MDP?

2. Action space



Intuition: What actions are possible

Type: A discrete or continuous set/space

Notation: 

Q: What is the action space of 
our Study MDP?

A: {Go Out, Study}
(a discrete set of size 2)

2. Action space
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Intuition: What is the effect of an action in a certain situation

Type: A conditional probability distribution

Notation: 

We always write s’ to denote the next state after taking action a in state s

3. Transition function
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Intuition: What is the effect of an action in a certain situation

Type: A conditional probability distribution

Notation: 

Q: What is the p(Uni | Home, Study)? 
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Intuition: What is the effect of an action in a certain situation

Type: A conditional probability distribution

Notation: 

Q: What is the p(Uni | Home, Study)? 

A: 1.0

3. Transition function



Intuition: What is the effect of an action in a certain situation

Type: A conditional probability distribution

Notation: 

Q: What is the p(Uni | Home, Go Out)? 

3. Transition function



Intuition: What is the effect of an action in a certain situation

Type: A conditional probability distribution

Notation: 

Q: What is the p(Uni | Home, Go Out)? 

A: 0.0 (impossible)

3. Transition function



Intuition: What is the effect of an action in a certain situation

Type: A conditional probability distribution

Notation: 

Q: What is the p(Pass exam | Uni, Study)? 

3. Transition function



Intuition: What is the effect of an action in a certain situation

Type: A conditional probability distribution

Notation: 

Q: What is the p(Pass exam | Uni, Study)? 

A: 0.9 (stochastic dynamics!)

3. Transition function



For atomic state and action spaces, the transition function can be stored as an array of size
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For atomic state and action spaces, the transition function can be stored as an array of size 

When we are at home and go out, we always end up in the bar
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For atomic state and action spaces, the transition function can be stored as an array of size 

When we are at uni and go out, we also always end up in the bar

3. Transition function



For atomic state and action spaces, the transition function can be stored as an array of size 

When we are at uni and study, we 10% fail the exam, and 90% pass the exam 
(stochastic transition)

3. Transition function



For atomic state and action spaces, the transition function can be stored as an array of size 

But what about the transitions from the terminal states?

3. Transition function



Terminal states: two valid perspectives



1) No available actions (and therefore transition function undefined = previous slide)
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1) No available actions (and therefore transition function undefined = previous slide)

2) All actions lead back to the same state with a reward of 0 

Terminal states: two valid perspectives
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Andrey Markov
(1865 - 1922)

Markov Property



‘The future only depends on the present and not on past history’
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‘The future only depends on the present and not on past history’

Markov Property



‘The future only depends on the present and not on past history’

Fundamental assumption of the Markov Decision Formulation

Markov Property



Partial Observability



Real-world tasks are actually usually not Markovian, they suffer from partial observability
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Real-world tasks are actually usually not Markovian, they suffer from partial observability
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Real-world tasks are actually usually not Markovian, they suffer from partial observability

‘Partially Observable Markov Decision Process’ (POMDP)

Partial Observability



Real-world tasks are actually usually not Markovian, they suffer from partial observability

Solution requires some form of memory 

Partial Observability



Real-world tasks are actually usually not Markovian, they suffer from partial observability

Solution requires some form of memory 
(we will skip this topic for now, and assume full observability / Markovianity)

Partial Observability



Loops



- Our toy MDP is a directed acyclic graph: 

- Can only move from top to bottom - useful for conceptual illustration. 

Loops



Loops

 p = 0.3



- In practice, MDPs are directed cyclic graphs: they contain (many) loops

- Same principles still apply & our later solution methods naturally handle loops 

Loops

 p = 0.3
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Type: 

Notation: 
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Intuition: How good or bad is a certain transition

Type: Function

Notation: 

Q: What is r(Uni,Study,Pass exam)? 

4. Reward function



Intuition: How good or bad is a certain transition

Type: Function

Notation: 

Q: What is r(Uni,Study,Pass exam)? 

A: 10.0

4. Reward function



Intuition: How good or bad is a certain transition

Type: Function

Notation: 

Q: What is r(Uni,Study,Home)? 

4. Reward function



Intuition: How good or bad is a certain transition

Type: Function

Notation: 

Q: What is r(Uni,Study,Home)? 

A: undefined (transition impossible)

4. Reward function



For atomic state and action spaces, the reward function can be stored as an array of size
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For atomic state and action spaces, the reward function can be stored as an array of size

However, since some transitions will be impossible, we may also store:
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For atomic state and action spaces, the reward function can be stored as an array of size

However, since some transitions will be impossible, we may also store:

or 

4. Reward function



Reward versus cost



Differences in terminology per field

- Path planning uses cost per step, reinforcement learning uses reward per step
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- But cost is negative reward: 

c(s,a,s’) = - r(s,a,s’)
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Differences in terminology per field

- Path planning uses cost per step, reinforcement learning uses reward per step

- But cost is negative reward: 

c(s,a,s’) = - r(s,a,s’)

- Therefore: 

Cost minimization =  reward maximization
       (planning) (reinforcement learning)

Reward versus cost



Intuition: 

Type: 

Notation: 
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Type: Scalar (constant)

Notation: 
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Intuition: How much do we ignore long-term rewards

Type: Scalar (constant)

Notation: 

5. Discount factor



Intuition: How much do we ignore long-term rewards

Type: Scalar (constant)

Notation: 

We will discuss this in a few slides

5. Discount factor



Markov Decision Process: Summary



Break



Part IV:

Policy



How do we actually act in the Markov Decision Process? 



Policy



Intuition: 

Type: 

Notation: 
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Intuition: Specify probability of each action for every possible state

Type: 

Notation: 

Policy



Intuition: Specify probability of each action for every possible state

Type: Conditional probability distribution

Notation: 
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Intuition: Specify probability of each action for every possible state

Type: Conditional probability distribution

Notation: 

Policy



For atomic state and action spaces, the policy can be stored as an array of size
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For atomic state and action spaces, the policy can be stored as an array of size
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For atomic state and action spaces, the policy can be stored as an array of size

For every state we specify the probability of each possible action 

Policy



For atomic state and action spaces, the policy can be stored as an array of size

For every state we specify the probability of each possible action 

Policy

(rows need to sum to 
1.0 to make it a valid 

probability distribution)



For atomic state and action spaces, the policy can be stored as an array of size

Terminal states don’t have a policy defined (no actions available)

Policy



Random policy



Random policy: per state every action has the same probability of selection
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Random policy: per state every action has the same probability of selection

Random policy
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Deterministic policy: in every state we always select one particular action
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Deterministic policy: in every state we always select one particular action

Shorthand notation: 
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Deterministic policy: in every state we always select one particular action

Shorthand notation: 

Example: 

Deterministic policy



Deterministic policy: in every state we always select one particular action

Shorthand notation: 

Example: is short for

Deterministic policy



Trace



Trace



When we act in the MDP we obtain a trace: a sequence of state-action-reward pairs
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When we act in the MDP we obtain a trace: a sequence of state-action-reward pairs
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When we act in the MDP we obtain a trace: a sequence of state-action-reward pairs
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When we act in the MDP we obtain a trace: a sequence of state-action-reward pairs

Trace

We use subscript t to indicate the timestep

We use greek letter τ to refer to the entire trace



Trace: Illustration
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Question: How many unique traces are possible from Home? 

Trace: Illustration



Question: How many unique traces are possible from Home? 

Answer: 

Trace: Illustration



Question: What is the probability of each of these traces? 

Trace: Illustration



Question: What is the probability of each of these traces? 

Answer: We don’t know, since we have not specified a policy (yet)

Trace: Illustration



Trace probability



To compute the probability of a trace we multiply all individual policy and transition 
probabilities in the trace (= product rule of probability)
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To compute the probability of a trace we multiply all individual policy and transition 
probabilities in the trace (= product rule of probability)
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To compute the probability of a trace we multiply all individual policy and transition 
probabilities in the trace (= product rule of probability)

Trace probability

The probability of the full trace is equal to



To compute the probability of a trace we multiply all individual policy and transition 
probabilities in the trace (= product rule of probability)

Trace probability

the probability we select the first action



To compute the probability of a trace we multiply all individual policy and transition 
probabilities in the trace (= product rule of probability)

Trace probability

times the probability we observe the first reward and next state



To compute the probability of a trace we multiply all individual policy and transition 
probabilities in the trace (= product rule of probability)

Trace probability

times the probability we select a certain next action 



To compute the probability of a trace we multiply all individual policy and transition 
probabilities in the trace (= product rule of probability)

Trace probability

etc.



Trace probability: Illustration
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Trace probability: Illustration
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Give the probability of
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Trace probability: Illustration
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Assume a random policy.
Give the probability of

Trace probability: Illustration



Assume a random policy.
Give the probability of

Trace probability: Illustration

0.5

1.0

0.5

0.1



Assume a random policy.
Give the probability of

Trace probability: Illustration



Assume a random policy.
Give the probability of

Trace probability: Illustration

0.5

1.0

0.5

0.9



Assume a random policy.
Give the probability of

Distribution adds up to 1.0 again

Trace probability: Illustration



Part IV:

Return



What makes a trace actually good? 



Return



Each trace also achieves a certain sum of rewards, 

which we call the cumulative reward or return
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Each trace also achieves a certain sum of rewards, 

which we call the cumulative reward or return

Return

The return R of trace τ



Each trace also achieves a certain sum of rewards, 

which we call the cumulative reward or return

Return

The return R of trace τ is the sum of first reward, second reward, third reward, etc. 



Return: Illustration



Question: What is the return of the trace [Home, Study, Uni, Study, Fail Exam]?
Answer: 

Return: Illustration



Question: What is the return of the trace [Home, Study, Uni, Study, Fail Exam]?
Answer: (-1) + (-10) = -11 

Return: Illustration



Discounted return



We may downweight long-term rewards, which we call the discounted return
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We may downweight long-term rewards, which we call the discounted return
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We may downweight long-term rewards, which we call the discounted return

Discounted return



We may downweight long-term rewards, which we call the discounted return

Exponentially downweight future rewards

Discounted return



Parameter we set ourselves (part of MDP definition)

Discount factor (γ) 



Parameter we set ourselves (part of MDP definition)

Question: What happens if we use γ=0.0? 
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Parameter we set ourselves (part of MDP definition)

Question: What happens if we use γ=0.0? 
Answer: Myopic/greedy agent - only cares about immediate reward

Discount factor (γ)



Parameter we set ourselves (part of MDP definition)

Question: What happens if we use γ=1.0? 

Discount factor (γ)



Parameter we set ourselves (part of MDP definition)

Question: What happens if we use γ=1.0? 
Answer: Long-term agent - rewards from all timesteps contribute equally

Discount factor (γ)



Spectrum of discount value choices



Spectrum of discount value choices

γ=1.0γ=0.0

myopic agent long-term agent



We ideally want γ=1.0, i.e., full sequential decision-making

Spectrum of discount value choices

γ=1.0γ=0.0

myopic agent long-term agent



In practice we may set it slightly lower, e.g., γ=0.99, for

Spectrum of discount value choices
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In practice we may set it slightly lower, e.g., γ=0.99, for
- Numerical stability (ensure the sum of rewards stays bounded/finite)

Spectrum of discount value choices

γ=1.0γ=0.0

myopic agent long-term agent



In practice we may set it slightly lower, e.g., γ=0.99, for
- Numerical stability (ensure the sum of rewards stays bounded/finite)
- Implicitly enforcing an agent to take as little steps a possible (since every extra step 

discounts the next obtained rewards - useful when there are transitions with r=0)

Spectrum of discount value choices

γ=1.0γ=0.0

myopic agent long-term agent



For this course we will mostly fix it at γ=1.0

Spectrum of discount value choices

γ=1.0γ=0.0

myopic agent long-term agent



Discounted return: Illustration



Use γ=0.9
Question: What is the discounted return of the trace [Home, Study, Uni, Go Out, Bar]?

Discounted return: Illustration



Use γ=0.9
Question: What is the discounted return of the trace [Home, Study, Uni, Go Out, Bar]?
Answer: -1 + 0.9 · 2.0 = 0.8

(Note the difference - the second reward now has smaller weight than the first)

Discounted return: Illustration



Trace Horizon



(sum notation)

Trace Horizon



Infinite-horizon return:

‘we keep summing rewards unless we reach a terminal state’

Trace Horizon



Infinite-horizon return:

‘we keep summing rewards unless we reach a terminal state’

(there are also finite-horizon MDPs, but we don’t cover them)

Trace Horizon



Part VI:

Value



Cumulative reward (= return)

Value



Cumulative reward (= return)
Expected cumulative reward

Value



Cumulative reward (= return)
Expected cumulative reward

What sum of rewards do we expect on average for a particular policy

Value



Cumulative reward (= return)
Expected cumulative reward

Value



Cumulative reward (= return)
Expected cumulative reward

We call this the value of a state s: 

Value



Cumulative reward (= return)
Expected cumulative reward

We call this the value of a state s: 

Given a certain policy, how much total reward do we expect to get from s in the future

Value



State value: Illustration



State value: Illustration



Question: Assume a random policy. 
Can we compute v(Home)? 
(Note: already computed this at the lecture start)

State value: Illustration



Question: Assume a random policy. 
Can we compute v(Home)? 

List all possible traces from Home 

State value: Illustration



Question: Assume a random policy. 
Can we compute v(Home)? 

List all possible traces from Home with their probability 

State value: Illustration



Question: Assume a random policy. 
Can we compute v(Home)? 

List all possible traces from Home with their probability and obtained return (sum of rewards) 

State value: Illustration



Question: Assume a random policy. 
Can we compute v(Home)? 

Reweight each return based on its probability 

State value: Illustration



Question: Assume a random policy. 
Can we compute v(Home)? 

Answer: v(Home) = 3.0 
(Matches our earlier computation!)

Reweight each return based on its probability and add up to get the value (expected return)

State value: Illustration



Question: Assume a random policy. 
Can do the same for all other states. 
So what is v(Bar)? 

State value: Illustration



Question: Assume a random policy. 
Can do the same for all other states. 
So what is v(Bar)? 

Answer: v(Bar) =0.0

The value of a terminal state is always 0.0, since we can never obtain any reward from it! 

State value: Illustration



Value function



The state value V(s) is a function: every state has its own value given a certain policy. 

Value function



The state value V(s) is a function: every state has its own value given a certain policy. 

Can represent this in memory as a table of size |S|
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The state value V(s) is a function: every state has its own value given a certain policy. 

Can represent this in memory as a table of size |S|

Value function



The state value V(s) is a function: every state has its own value given a certain policy. 

Can represent this in memory as a table of size |S|

Check v(Uni) yourself by listing all possible traces from Uni, their probability and return

Value function



State-action value



We can equally define the value of a state-action pair
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We can equally define the value of a state-action pair

State-action value



We can equally define the value of a state-action pair

Exact same principle as before, but now we also condition on the first action we take

State-action value



State-action value function



The state value q(s,a) is a function: every state-action has its own value given a certain policy. 

State-action value function



The state value q(s,a) is a function: every state-action has its own value given a certain policy. 

Can represent this in memory as a table of size |S| x |A|
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The state value q(s,a) is a function: every state-action has its own value given a certain policy. 

Can represent this in memory as a table of size |S| x |A|

State-action value function



The state value q(s,a) is a function: every state-action has its own value given a certain policy. 

Can represent this in memory as a table of size |S| x |A|

State-action value function



Optimal value & policy
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The best value we can achieve from every state/state-action

          

Optimal value function



The best value we can achieve from every state/state-action

Notation:          , 
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The best value we can achieve from every state/state-action

Notation:          , 

Optimal value function

q* = 2.0 q* = 8.0

q* = 7.0q* = 2.0

It is impossible to achieve more 
than 7.0 on average from 

(Home, Study)



The best value we can achieve from every state/state-action

Notation:          , 

Each MDP has only one optimal value function = best we can achieve with optimal behaviour

Optimal value function

q* = 2.0 q* = 8.0

q* = 7.0q* = 2.0

It is impossible to achieve more 
than 7.0 on average from 

(Home, Study)



Optimal policy



A policy that obtains the optimal value function. 
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A policy that obtains the optimal value function. 
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A policy that obtains the optimal value function. 

Notation: 

Intuition: In principle the greedy (max) policy
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A policy that obtains the optimal value function. 

Notation: 

Intuition: In principle the greedy (max) policy

Optimal policy

q*=7 q*=7 π*(Home)=Study
or
π*(Home)=Go Out



A policy that obtains the optimal value function. 

Notation: 

Intuition: In principle the greedy (max) policy

When we have ties we can arbitrarily break them

Optimal policy

q*=7 q*=7 π*(Home)=Study
or
π*(Home)=Go Out



A policy that obtains the optimal value function. 

Notation: 

Intuition: In principle the greedy (max) policy

When we have ties we can arbitrarily break them
(i.e., therefore there can theoretically be more than one optimal policy)

Optimal policy

q*=7 q*=7 π*(Home)=Study
or
π*(Home)=Go Out



A policy that obtains the optimal value function. 

Notation: 

Intuition: In principle the greedy (max) policy

When we have ties we can arbitrarily break them
(i.e., therefore there can theoretically be more than one optimal policy)

(but they all have the same optimal value function)

Optimal policy

q*=7 q*=7 π*(Home)=Study
or
π*(Home)=Go Out
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π(a|s)
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- Policy: We act in the MDP according to a policy
π(a|s)

- Trace: When we act with the policy we induce a sequence of (s,a,r) pairs, i..e, a trace. 
τ

- Return: Each such trace has a certain (discounted) cumulative reward, i.e., a return. 
R(τ)

- Value: Given a policy, each state(-action) has an average/expected return, i.e., a value.
vπ(s), qπ(s,a)

Summary



- Policy: We act in the MDP according to a policy
π(a|s)

- Trace: When we act with the policy we induce a sequence of (s,a,r) pairs, i..e, a trace. 
τ

- Return: Each such trace has a certain (discounted) cumulative reward, i.e., a return. 
R(τ)

- Value: Given a policy, each state(-action) has an average/expected return, i.e., a value.
vπ(s), qπ(s,a)

- Optimal value/policy: There is only one optimal value function, with a greedy/max policy.
v*(s), q*(s,a), π*(s)

Summary
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Read Sutton & Barto, Chapter 3
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1. Draw your own MDP, e.g.: 

2. Define a policy in this MDP

3. Compute a trace distribution
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1. Draw your own MDP, e.g.: 

2. Define a policy in this MDP

3. Compute a trace distribution

4. Compute the returns of these traces

At Home (by hand)



1. Draw your own MDP, e.g.: 

2. Define a policy in this MDP

3. Compute a trace distribution

4. Compute the returns of these traces

5. Compute v(s) and q(s,a) for your policy

At Home (by hand)



At Home (code)



Go to Colab: http://tiny.cc/ntbjvz

At Home (code)

http://tiny.cc/ntbjvz


Go to Colab: http://tiny.cc/ntbjvz

At Home (code)

http://tiny.cc/ntbjvz


Go to Colab: http://tiny.cc/ntbjvz

At Home (code)

Interactive code for lecture 
material: play around and make 

sure you understand!

http://tiny.cc/ntbjvz


Next Week



1. Bellman Equation

Recursive relation between the state(-action) values

Next Week



1. Bellman Equation

Recursive relation between the state(-action) values

2. Dynamic programming

Use this recursive relation to efficiently find the optimal value function & policy

Next Week



Questions? 


