
Markov Decision Process

Thomas Moerland

Leiden University

Bandits

One-step decision-making problem

Bandits

One-step decision-making problem

Bandit
(no state/state fixed)

a1 a2

rr

Bandits

One-step decision-making problem

Bandit
(no state/state fixed)

Bandits

One-step decision-making problem

Bandit
(no state/state fixed)

Contextual bandit
(state changes action rewards)

Bandits

One-step decision-making problem

Markov Decision Process

Sequential decision-making problem

Bandit
(no state/state fixed)

Contextual bandit
(state changes action rewards)

Bandits

One-step decision-making problem

Markov Decision Process

Sequential decision-making problem

Bandit
(no state/state fixed)

Contextual bandit
(state changes action rewards)

Bandits

One-step decision-making problem

Markov Decision Process

Sequential decision-making problem

Markov Decision Process
(actions influence what next state

you see
-

makes the problem sequential: we
may prefer a low instant reward if it

gives us high long-term reward)

Bandit
(no state/state fixed)

Contextual bandit
(state changes action rewards)

Content

1. Sequential Decision Making (relevance)

Content

1. Sequential Decision Making (relevance)

2. Conceptual Example (high-level overview)

Content

1. Sequential Decision Making (relevance)

2. Conceptual Example (high-level overview)

3. Markov Decision Process (problem definition)

Content

1. Sequential Decision Making (relevance)

2. Conceptual Example (high-level overview)

3. Markov Decision Process (problem definition)

Break

Content

1. Sequential Decision Making (relevance)

2. Conceptual Example (high-level overview)

3. Markov Decision Process (problem definition)

Break

4. Policy (solution space)

Content

1. Sequential Decision Making (relevance)

2. Conceptual Example (high-level overview)

3. Markov Decision Process (problem definition)

Break

4. Policy (solution space)

5. Return

Content

1. Sequential Decision Making (relevance)

2. Conceptual Example (high-level overview)

3. Markov Decision Process (problem definition)

Break

4. Policy (solution space)

5. Return

6. Value (objective)

Content

1. Sequential Decision Making (relevance)

2. Conceptual Example (high-level overview)

3. Markov Decision Process (problem definition)

Break

4. Policy (solution space)

5. Return

6. Value (objective)

7. Optimal value & policy (solution)

Content

Part I:

Sequential Decision Making

Sequential Decision Making

Many key problems in artificial intelligence are naturally sequential
(usually in time)

Sequential Decision Making

Many key problems in artificial intelligence are naturally sequential
(usually in time)

Sequential Decision Making

Many key problems in artificial intelligence are naturally sequential
(usually in time)

Sequential Decision Making

Many key problems in artificial intelligence are naturally sequential
(usually in time)

Sequential Decision Making

Many key successes of AI use this formulation…

Sequential Decision Making

Silver, David, et al. "Mastering the game of Go with deep neural networks and tree search." Nature 529.7587 (2016): 484-489.

Fawzi, Alhussein, et al. "Discovering faster matrix multiplication algorithms with reinforcement learning." Nature 610.7930 (2022): 47-53.

Degrave, Jonas, et al. "Magnetic control of tokamak plasmas through deep reinforcement learning." Nature 602.7897 (2022): 414-419.

Segler, Marwin HS et al. "Planning chemical syntheses with deep neural networks and symbolic AI." Nature 555.7698 (2018): 604-610.

Mirhoseini, Azalia, et al. "A graph placement methodology for fast chip design." Nature 594.7862 (2021): 207-212.

Many key successes of AI use this formulation…

…even ones that don’t seem sequential at first!

Sequential Decision Making

Agent-Environment loop

Agent-Environment loop

Agent

Environment

Agent-Environment loop

Agent

Environment

action a

Agent-Environment loop

Agent

Environment

action a

Agent-Environment loop

Agent

Environment

action a

state
s

Agent-Environment loop

Agent

Environment

action a

state
s

reward
r

Agent-Environment loop

Agent

Environment

action a

state
s

reward
r

Agent-Environment loop

Agent

Environment

action a

state
s

reward
r

Agent-Environment loop

Agent

Environment

action a

state
s

reward
r

Find an action selection strategy…
(policy π)

Agent-Environment loop

Agent

Environment

action a

state
s

reward
r

Find an action selection strategy…
(policy π)

… that gets as much reward as possible!

Part II

Conceptual Example
(High-level Overview)

Example: Notation

Example: The Study MDP

We are interested in the optimal value of a state (v*) and the optimal value of an action (q*)

Example: The Study MDP

We are interested in the optimal value of a state (v*) and the optimal value of an action (q*)

“How much reward can we at best get from that state or action”

Example: The Study MDP

Question: What is q*(Home, Go Out)?

Example: The Study MDP

q* = ?

Question: What is q*(Home, Go Out)?
Answer: 2.0

(we always reach the Bar for reward of 2.0, and then terminate)

Example: The Study MDP

q* = 2.0

Question: What is v*(Bar)?

Example: The Study MDP

q* = 2.0

v* = ?

Question: What is v*(Bar)?
Answer: 0.0

(terminal state so we can never get any additional reward)

Example: The Study MDP

q* = 2.0

v* = 0.0

v* = 0.0 v* = 0.0

Question: What is q*(Uni, Go Out)?

Example: The Study MDP

q* = 2.0

v* = 0.0

q* = ?

v* = 0.0 v* = 0.0

Question: What is q*(Uni, Go Out)?
Answer: 2.0

(we always reach the Bar for reward of 2.0, and then terminate)

Example: The Study MDP

q* = 2.0

v* = 0.0

q* = 2.0

v* = 0.0 v* = 0.0

Question: What is q*(Uni, Study)? (Stochastic!)

Example: The Study MDP

q* = 2.0

v* = 0.0

q* = 2.0

v* = 0.0 v* = 0.0

q* = ?

Question: What is q*(Uni, Study)? (Stochastic!)
Answer: 0.9*10 + 0.1 * (-10) = 8.0

(90% we pass the exam for reward +10, but 10% we fail and get reward -10)

Example: The Study MDP

q* = 2.0

v* = 0.0

q* = 2.0

v* = 0.0 v* = 0.0

q* = 8.0

Question: What is q*(Uni, Study)? (Stochastic!)
Answer: 0.9*10 + 0.1 * (-10) = 8.0

(90% we pass the exam for reward +10, but 10% we fail and get reward -10)

Example: The Study MDP

q* = 2.0

v* = 0.0

q* = 2.0

v* = 0.0 v* = 0.0

q* = 8.0
We average

over the
environment

dynamics

Question: What is v*(Uni)?

Example: The Study MDP

q* = 2.0

v* = 0.0

q* = 2.0

v* = 0.0 v* = 0.0

q* = 8.0

v* = ?

Question: What is v*(Uni)?
Answer: 8.0

(The best choice is to Study from Uni, which we already know has value 8.0)

Example: The Study MDP

q* = 2.0

v* = 0.0

q* = 2.0

v* = 0.0 v* = 0.0

q* = 8.0

v* = 8.0

Question: What is v*(Uni)?
Answer: 8.0

(The best choice is to Study from Uni, which we already know has value 8.0)

Example: The Study MDP

q* = 2.0

v* = 0.0

q* = 2.0

v* = 0.0 v* = 0.0

q* = 8.0

v* = 8.0
We maximize
over our own

decisions

Question: What is v*(Uni)?
Answer: 8.0

(The best choice is to Study from Uni, which we already know has value 8.0)

Example: The Study MDP

q* = 2.0

v* = 0.0

q* = 2.0

v* = 0.0 v* = 0.0

q* = 8.0

v* = 8.0

Markov Decision
Process=

MAX

EXP

graph

Question: What is q*(Home,Study)?

Example: The Study MDP

q* = 2.0

v* = 0.0

q* = 2.0

v* = 0.0 v* = 0.0

q* = 8.0

v* = 8.0

q* = ?

Question: What is q*(Home,Study)?
Answer: -1.0 + 8.0 = 7.0

(We get -1.0 for reaching the Uni, and can then at best get 8.0 afterwards)

Example: The Study MDP

q* = 2.0

v* = 0.0

q* = 2.0

v* = 0.0 v* = 0.0

q* = 8.0

v* = 8.0

q* = 7.0

Question: What is v*(Home)?

Example: The Study MDP

q* = 2.0

v* = 0.0

q* = 2.0

v* = 0.0 v* = 0.0

q* = 8.0

v* = 8.0

q* = 7.0

v* = ?

Question: What is v*(Home)?
Answer: 7.0

(We can choose to Study, which will give an average total reward of 7.0)

Example: The Study MDP

q* = 2.0

v* = 0.0

q* = 2.0

v* = 0.0 v* = 0.0

q* = 8.0

v* = 8.0

q* = 7.0

v* = 7.0

Question: So what should you do at Home?

Example: The Study MDP

q* = 2.0

v* = 0.0

q* = 2.0

v* = 0.0 v* = 0.0

q* = 8.0

v* = 8.0

q* = 7.0

v* = 7.0

Question: So what should you do at Home?
Answer: Come to university!

Example: The Study MDP

q* = 2.0

v* = 0.0

q* = 2.0

v* = 0.0 v* = 0.0

q* = 8.0

v* = 8.0

q* = 7.0

v* = 7.0

Given the optimal q* values
you know how to act

Question: Imagine we act randomly instead of optimally. Which values will stay the same?

Example: The Study MDP

q* = 2.0

v* = 0.0

q* = 2.0

v* = 0.0 v* = 0.0

q* = 8.0

v* = 8.0

q* = 7.0

v* = 7.0

Question: Imagine we act randomly instead of optimally. Which values will stay the same?
Answer: Terminal states and actions leading to terminal states - don’t depend on our policy.

Example: The Study MDP

q = 2.0

v = 0.0

q = 2.0

v = 0.0 v = 0.0

q = 8.0

We now write v and q
(without a star) since the
values are not optimal

Question: But what is v(Uni) under the random policy?

Example: The Study MDP

q = 2.0

v = 0.0

q = 2.0

v = 0.0 v = 0.0

q = 8.0

v = ?

Question: But what is v(Uni) under the random policy?
Answer: 5.0

(Act random, so 50% of times Go Out for q=2.0, and 50% Study for q=8.0)

Example: The Study MDP

q = 2.0

v = 0.0

q = 2.0

v = 0.0 v = 0.0

q = 8.0

v = 5.0

Question: And q(Home, Study) under the random policy?

Example: The Study MDP

q = 2.0

v = 0.0

q = 2.0

v = 0.0 v = 0.0

q = 8.0

v = 5.0

q = ?

Question: And q(Home, Study) under the random policy?
Answer: 4.0

(get -1.0 for going to Uni, and then 5.0 from there)

Example: The Study MDP

q = 2.0

v = 0.0

q = 2.0

v = 0.0 v = 0.0

q = 8.0

v = 5.0

q = 4.0

Question: So what is v(Home) under the random policy?

Example: The Study MDP

q = 2.0

v = 0.0

q = 2.0

v = 0.0 v = 0.0

q = 8.0

v = 5.0

q = 4.0

v = ?

Question: So what is v(Home) under the random policy?
Answer: 3.0

(50% of times Go Out for 2.0, 50% of times Study for 4.0)

Example: The Study MDP

q = 2.0

v = 0.0

q = 2.0

v = 0.0 v = 0.0

q = 8.0

v = 5.0

q = 4.0

v = 3.0

Question: So what is v(Home) under the random policy?
Answer: 3.0

(50% of times Go Out for 2.0, 50% of times Study for 4.0)

Example: The Study MDP

q = 2.0

v = 0.0

q = 2.0

v = 0.0 v = 0.0

q = 8.0

We now computed the value
function of the random policy:

every policy has its own
associated value function

v = 5.0

q = 4.0

v = 3.0

Question: Is it smart to act randomly from Home?

Example: The Study MDP

q = 2.0

v = 0.0

q = 2.0

v = 0.0 v = 0.0

q = 8.0

v = 5.0

q = 4.0

v = 3.0

Question: Is it smart to act randomly from Home?
Answer: No!

We could optimally get 7.0 on average from Home, but random policy gives just 3.0!

Example: The Study MDP

q = 2.0

v = 0.0

q = 2.0

v = 0.0 v = 0.0

q = 8.0

v = 5.0

q = 4.0

v = 3.0

Example: The Study MDP

q = 2.0

v = 0.0

q = 2.0

v = 0.0 v = 0.0

q = 8.0

v = 5.0

q = 4.0

v = 3.0

There is a recursive relation between the value estimates of states and actions

Example: The Study MDP

q = 2.0

v = 0.0

q = 2.0

v = 0.0 v = 0.0

q = 8.0

v = 5.0

q = 4.0

v = 3.0

There is a recursive relation between the value estimates of states and actions
- Compute q from v and rewards by averaging over the environment stochasticity (EXP)

Example: The Study MDP

q = 2.0

v = 0.0

q = 2.0

v = 0.0 v = 0.0

q = 8.0

v = 5.0

q = 4.0

v = 3.0

There is a recursive relation between the value estimates of states and actions
- Compute q from v and rewards by averaging over the environment stochasticity (EXP)
- Compute v from q depending on our own behaviour (for optimal: MAX)

Example: The Study MDP

q = 2.0

v = 0.0

q = 2.0

v = 0.0 v = 0.0

q = 8.0

v = 5.0

q = 4.0

v = 3.0

There is a recursive relation between the value estimates of states and actions
- Compute q from v and rewards by averaging over the environment stochasticity (EXP)
- Compute v from q depending on our own behaviour (for optimal: MAX)

MDP = MAX-EXP graph problem

Example: The Study MDP

q = 2.0

v = 0.0

q = 2.0

v = 0.0 v = 0.0

q = 8.0

v = 5.0

q = 4.0

v = 3.0

In the remainder of this lecture we will formalize these ideas,

In the remainder of this lecture we will formalize these ideas,

with the eventual goal to compute the optimal value function q*/v* for a given MDP,

In the remainder of this lecture we will formalize these ideas,

with the eventual goal to compute the optimal value function q*/v* for a given MDP,

since we then directly know how to act optimally.

Part III:

Markov Decision Process

Markov Decision Process (MDP)

Generic way to formally define a sequential decision-making problem.

Markov Decision Process (MDP)

Generic way to formally define a sequential decision-making problem.

- Can handle stochastic environments (through a probabilistic transition function)

Markov Decision Process (MDP)

Generic way to formally define a sequential decision-making problem.

- Can handle stochastic environments (through a probabilistic transition function)

- Can trade-off multiple goals (through a reward function)

Markov Decision Process (MDP)

Let’s formulate our problem as an MDP!

Example: The Study MDP

An MDP consists of 5 elements

1. State space

2. Action space

3. Transition function

4. Reward function

5. Discount parameter

Markov Decision Process definition

Intuition:

Type:

Notation:

1. State space

Intuition: What observations are possible

Type:

Notation:

1. State space

Intuition: What observations are possible

Type: A discrete or continuous set/space

Notation:

1. State space

Intuition: What observations are possible

Type: A discrete or continuous set/space

Notation:

1. State space

Intuition: What observations are possible

Type: A discrete or continuous set/space

Notation:

1. State space

Intuition: What observations are possible

Type: A discrete or continuous set/space

Notation:

Q: What is the state space of this MDP?

1. State space

Intuition: What observations are possible

Type: A discrete or continuous set/space

Notation:

Q: What is the state space of this MDP?

A: {Home, Bar, Uni, Fail exam, Pass exam}
(a discrete set of size 5)

1. State space

Atomic versus factorized states

Atomic

- Each state is a unique element

Atomic versus factorized states

Atomic

- Each state is a unique element

- No relation between states

Atomic versus factorized states

Atomic

- Each state is a unique element

- No relation between states

- Example: s = 1

Atomic versus factorized states

Atomic

- Each state is a unique element

- No relation between states

- Example: s = 1

Atomic versus factorized states

Atomic

- Each state is a unique element

- No relation between states

- Example: s = 1

Atomic versus factorized states

Factorized

- State is a vector/matrix of numbers

Atomic

- Each state is a unique element

- No relation between states

- Example: s = 1

Atomic versus factorized states

Factorized

- State is a vector/matrix of numbers

- Relation/overlap between states

Atomic

- Each state is a unique element

- No relation between states

- Example: s = 1

Atomic versus factorized states

Factorized

- State is a vector/matrix of numbers

- Relation/overlap between states

- Example: s = (64,0,3,1)

Atomic

- Each state is a unique element

- No relation between states

- Example: s = 1

Atomic versus factorized states

Factorized

- State is a vector/matrix of numbers

- Relation/overlap between states

- Example: s = (64,0,3,1)

Atomic

- Each state is a unique element

- No relation between states

- Example: s = 1

Main focus of this course

Atomic versus factorized states

Factorized

- State is a vector/matrix of numbers

- Relation/overlap between states

- Example: s = (64,0,3,1)

Atomic

- Each state is a unique element

- No relation between states

- Example: s = 1

Main focus of this course

Atomic versus factorized states

Factorized

- State is a vector/matrix of numbers

- Relation/overlap between states

- Example: s = (64,0,3,1)

Allows for approximation & generalisation
(e.g. deep learning)

Curse of Dimensionality

The cardinality of a state space grows exponentially in the dimensionality of the space

Curse of Dimensionality

The cardinality of a state space grows exponentially in the dimensionality of the space

The total number of possible unique states
(e.g., [0,0,0], [0,0,1], [0,0,2], [0,0,3], [0,1,0] etc.)

Curse of Dimensionality

The cardinality of a state space grows exponentially in the dimensionality of the space

The amount of elements in a single state
(e.g., s=[2, 8,-4] has dimensionality 3)

Curse of Dimensionality

The cardinality of a state space grows exponentially in the dimensionality of the space

Grows extremely fast!

Curse of Dimensionality

Curse of Dimensionality: Illustration

Curse of Dimensionality: Illustration

Tic-Tac-Toe state:

- Matrix representation of the board

- Each matrix element in (X,O, Empty)

Curse of Dimensionality: Illustration

Tic-Tac-Toe state:

- Matrix representation of the board

- Each matrix element in (X,O, Empty)

Curse of Dimensionality: Illustration

Tic-Tac-Toe shape Dimensionality Cardinality Memory (float-32)

Tic-Tac-Toe state:

- Matrix representation of the board

- Each matrix element in (X,O, Empty)

Curse of Dimensionality: Illustration

Tic-Tac-Toe shape Dimensionality Cardinality Memory (float-32)

3 by 3

Tic-Tac-Toe state:

- Matrix representation of the board

- Each matrix element in (X,O, Empty)

Curse of Dimensionality: Illustration

Tic-Tac-Toe shape Dimensionality Cardinality Memory (float-32)

3 by 3 9

Tic-Tac-Toe state:

- Matrix representation of the board

- Each matrix element in (X,O, Empty)

Curse of Dimensionality: Illustration

Tic-Tac-Toe shape Dimensionality Cardinality Memory (float-32)

3 by 3 9 39 (=19.683)

Tic-Tac-Toe state:

- Matrix representation of the board

- Each matrix element in (X,O, Empty)

Curse of Dimensionality: Illustration

Tic-Tac-Toe shape Dimensionality Cardinality Memory (float-32)

3 by 3 9 39 (=19.683) 77 KB

Tic-Tac-Toe state:

- Matrix representation of the board

- Each matrix element in (X,O, Empty)

Curse of Dimensionality: Illustration

Tic-Tac-Toe shape Dimensionality Cardinality Memory (float-32)

3 by 3 9 39 (=19.683) 77 KB

4 by 4

Tic-Tac-Toe state:

- Matrix representation of the board

- Each matrix element in (X,O, Empty)

Curse of Dimensionality: Illustration

Tic-Tac-Toe shape Dimensionality Cardinality Memory (float-32)

3 by 3 9 39 (=19.683) 77 KB

4 by 4 16 316 (~43 million) 164 MB

Tic-Tac-Toe state:

- Matrix representation of the board

- Each matrix element in (X,O, Empty)

Curse of Dimensionality: Illustration

Tic-Tac-Toe shape Dimensionality Cardinality Memory (float-32)

3 by 3 9 39 (=19.683) 77 KB

4 by 4 16 316 (~43 million) 164 MB

5 by 5

Tic-Tac-Toe state:

- Matrix representation of the board

- Each matrix element in (X,O, Empty)

Curse of Dimensionality: Illustration

Tic-Tac-Toe shape Dimensionality Cardinality Memory (float-32)

3 by 3 9 39 (=19.683) 77 KB

4 by 4 16 316 (~43 million) 164 MB

5 by 5 25 325 (~847 billion) 789 TB (!)

Tic-Tac-Toe state:

- Matrix representation of the board

- Each matrix element in (X,O, Empty)

The total size of a state space grows very fast when its dimensionality increases

Curse of Dimensionality: Illustration

Tic-Tac-Toe shape Dimensionality Cardinality Memory (float-32)

3 by 3 9 39 (=19.683) 77 KB

4 by 4 16 316 (~43 million) 164 MB

5 by 5 25 325 (~847 billion) 789 TB (!)

Tic-Tac-Toe state:

- Matrix representation of the board

- Each matrix element in (X,O, Empty)

The total size of a state space grows very fast when its dimensionality increases
i.e., tabular/atomic solutions only feasible in smaller problems

Curse of Dimensionality: Illustration

Tic-Tac-Toe shape Dimensionality Cardinality Memory (float-32)

3 by 3 9 39 (=19.683) 77 KB

4 by 4 16 316 (~43 million) 164 MB

5 by 5 25 325 (~847 billion) 789 TB (!)

Intuition:

Type:

Notation:

2. Action space

Intuition: What actions are possible

Type:

Notation:

2. Action space

Intuition: What actions are possible

Type: A discrete or continuous set/space

Notation:

2. Action space

Intuition: What actions are possible

Type: A discrete or continuous set/space

Notation:

2. Action space

Intuition: What actions are possible

Type: A discrete or continuous set/space

Notation:

2. Action space

Intuition: What actions are possible

Type: A discrete or continuous set/space

Notation:

Q: What is the action space of
our Study MDP?

2. Action space

Intuition: What actions are possible

Type: A discrete or continuous set/space

Notation:

Q: What is the action space of
our Study MDP?

A: {Go Out, Study}
(a discrete set of size 2)

2. Action space

Intuition:

Type:

Notation:

3. Transition function

Intuition: What is the effect of an action in a certain situation

Type:

Notation:

3. Transition function

Intuition: What is the effect of an action in a certain situation

Type: A conditional probability distribution

Notation:

3. Transition function

Intuition: What is the effect of an action in a certain situation

Type: A conditional probability distribution

Notation:

3. Transition function

Intuition: What is the effect of an action in a certain situation

Type: A conditional probability distribution

Notation:

We always write s’ to denote the next state after taking action a in state s

3. Transition function

Intuition: What is the effect of an action in a certain situation

Type: A conditional probability distribution

Notation:

3. Transition function

Intuition: What is the effect of an action in a certain situation

Type: A conditional probability distribution

Notation:

Q: What is the p(Uni | Home, Study)?

3. Transition function

Intuition: What is the effect of an action in a certain situation

Type: A conditional probability distribution

Notation:

Q: What is the p(Uni | Home, Study)?

A: 1.0

3. Transition function

Intuition: What is the effect of an action in a certain situation

Type: A conditional probability distribution

Notation:

Q: What is the p(Uni | Home, Go Out)?

3. Transition function

Intuition: What is the effect of an action in a certain situation

Type: A conditional probability distribution

Notation:

Q: What is the p(Uni | Home, Go Out)?

A: 0.0 (impossible)

3. Transition function

Intuition: What is the effect of an action in a certain situation

Type: A conditional probability distribution

Notation:

Q: What is the p(Pass exam | Uni, Study)?

3. Transition function

Intuition: What is the effect of an action in a certain situation

Type: A conditional probability distribution

Notation:

Q: What is the p(Pass exam | Uni, Study)?

A: 0.9 (stochastic dynamics!)

3. Transition function

For atomic state and action spaces, the transition function can be stored as an array of size

….

3. Transition function

For atomic state and action spaces, the transition function can be stored as an array of size

3. Transition function

For atomic state and action spaces, the transition function can be stored as an array of size

3. Transition function

For atomic state and action spaces, the transition function can be stored as an array of size

When we are at home and go out, we always end up in the bar

3. Transition function

For atomic state and action spaces, the transition function can be stored as an array of size

When we are at uni and go out, we also always end up in the bar

3. Transition function

For atomic state and action spaces, the transition function can be stored as an array of size

When we are at uni and study, we 10% fail the exam, and 90% pass the exam
(stochastic transition)

3. Transition function

For atomic state and action spaces, the transition function can be stored as an array of size

But what about the transitions from the terminal states?

3. Transition function

Terminal states: two valid perspectives

1) No available actions (and therefore transition function undefined = previous slide)

Terminal states: two valid perspectives

1) No available actions (and therefore transition function undefined = previous slide)

2) All actions lead back to the same state with a reward of 0

Terminal states: two valid perspectives

1) No available actions (and therefore transition function undefined = previous slide)

2) All actions lead back to the same state with a reward of 0

Terminal states: two valid perspectives

1) No available actions (and therefore transition function undefined = previous slide)

2) All actions lead back to the same state with a reward of 0

Terminal states: two valid perspectives

Markov Property

Markov Property

Andrey Markov
(1865 - 1922)

Markov Property

‘The future only depends on the present and not on past history’

Markov Property

‘The future only depends on the present and not on past history’

Markov Property

‘The future only depends on the present and not on past history’

Markov Property

‘The future only depends on the present and not on past history’

Fundamental assumption of the Markov Decision Formulation

Markov Property

Partial Observability

Real-world tasks are actually usually not Markovian, they suffer from partial observability

Partial Observability

Real-world tasks are actually usually not Markovian, they suffer from partial observability

Partial Observability

Real-world tasks are actually usually not Markovian, they suffer from partial observability

‘Partially Observable Markov Decision Process’ (POMDP)

Partial Observability

Real-world tasks are actually usually not Markovian, they suffer from partial observability

Solution requires some form of memory

Partial Observability

Real-world tasks are actually usually not Markovian, they suffer from partial observability

Solution requires some form of memory
(we will skip this topic for now, and assume full observability / Markovianity)

Partial Observability

Loops

- Our toy MDP is a directed acyclic graph:

- Can only move from top to bottom - useful for conceptual illustration.

Loops

Loops

 p = 0.3

- In practice, MDPs are directed cyclic graphs: they contain (many) loops

- Same principles still apply & our later solution methods naturally handle loops

Loops

 p = 0.3

Intuition:

Type:

Notation:

4. Reward function

Intuition: How good or bad is a certain transition

Type:

Notation:

4. Reward function

Intuition: How good or bad is a certain transition

Type: Function

Notation:

4. Reward function

Intuition: How good or bad is a certain transition

Type: Function

Notation:

4. Reward function

Intuition: How good or bad is a certain transition

Type: Function

Notation:

Q: What is r(Uni,Study,Pass exam)?

4. Reward function

Intuition: How good or bad is a certain transition

Type: Function

Notation:

Q: What is r(Uni,Study,Pass exam)?

A: 10.0

4. Reward function

Intuition: How good or bad is a certain transition

Type: Function

Notation:

Q: What is r(Uni,Study,Home)?

4. Reward function

Intuition: How good or bad is a certain transition

Type: Function

Notation:

Q: What is r(Uni,Study,Home)?

A: undefined (transition impossible)

4. Reward function

For atomic state and action spaces, the reward function can be stored as an array of size

4. Reward function

For atomic state and action spaces, the reward function can be stored as an array of size

However, since some transitions will be impossible, we may also store:

or

4. Reward function

For atomic state and action spaces, the reward function can be stored as an array of size

However, since some transitions will be impossible, we may also store:

or

4. Reward function

Reward versus cost

Differences in terminology per field

- Path planning uses cost per step, reinforcement learning uses reward per step

Reward versus cost

Differences in terminology per field

- Path planning uses cost per step, reinforcement learning uses reward per step

- But cost is negative reward:

c(s,a,s’) = - r(s,a,s’)

Reward versus cost

Differences in terminology per field

- Path planning uses cost per step, reinforcement learning uses reward per step

- But cost is negative reward:

c(s,a,s’) = - r(s,a,s’)

- Therefore:

Cost minimization = reward maximization
 (planning) (reinforcement learning)

Reward versus cost

Intuition:

Type:

Notation:

5. Discount factor

Intuition: How much do we ignore long-term rewards

Type:

Notation:

5. Discount factor

Intuition: How much do we ignore long-term rewards

Type: Scalar (constant)

Notation:

5. Discount factor

Intuition: How much do we ignore long-term rewards

Type: Scalar (constant)

Notation:

5. Discount factor

Intuition: How much do we ignore long-term rewards

Type: Scalar (constant)

Notation:

We will discuss this in a few slides

5. Discount factor

Markov Decision Process: Summary

Break

Part IV:

Policy

How do we actually act in the Markov Decision Process?

Policy

Intuition:

Type:

Notation:

Policy

Intuition: Specify probability of each action for every possible state

Type:

Notation:

Policy

Intuition: Specify probability of each action for every possible state

Type: Conditional probability distribution

Notation:

Policy

Intuition: Specify probability of each action for every possible state

Type: Conditional probability distribution

Notation:

Policy

For atomic state and action spaces, the policy can be stored as an array of size

….

Policy

For atomic state and action spaces, the policy can be stored as an array of size

Policy

For atomic state and action spaces, the policy can be stored as an array of size

Policy

For atomic state and action spaces, the policy can be stored as an array of size

For every state we specify the probability of each possible action

Policy

For atomic state and action spaces, the policy can be stored as an array of size

For every state we specify the probability of each possible action

Policy

(rows need to sum to
1.0 to make it a valid

probability distribution)

For atomic state and action spaces, the policy can be stored as an array of size

Terminal states don’t have a policy defined (no actions available)

Policy

Random policy

Random policy: per state every action has the same probability of selection

Random policy

Random policy: per state every action has the same probability of selection

Random policy

Random policy: per state every action has the same probability of selection

Random policy

Deterministic policy

Deterministic policy: in every state we always select one particular action

Deterministic policy

Deterministic policy: in every state we always select one particular action

Deterministic policy

Deterministic policy: in every state we always select one particular action

Deterministic policy

Deterministic policy: in every state we always select one particular action

Shorthand notation:

Deterministic policy

Deterministic policy: in every state we always select one particular action

Shorthand notation:

Example:

Deterministic policy

Deterministic policy: in every state we always select one particular action

Shorthand notation:

Example: is short for

Deterministic policy

Trace

Trace

When we act in the MDP we obtain a trace: a sequence of state-action-reward pairs

Trace

When we act in the MDP we obtain a trace: a sequence of state-action-reward pairs

Trace

When we act in the MDP we obtain a trace: a sequence of state-action-reward pairs

Trace

We use subscript t to indicate the timestep

When we act in the MDP we obtain a trace: a sequence of state-action-reward pairs

Trace

We use subscript t to indicate the timestep

We use greek letter τ to refer to the entire trace

Trace: Illustration

Trace: Illustration

Question: How many unique traces are possible from Home?

Trace: Illustration

Question: How many unique traces are possible from Home?

Answer:

Trace: Illustration

Question: What is the probability of each of these traces?

Trace: Illustration

Question: What is the probability of each of these traces?

Answer: We don’t know, since we have not specified a policy (yet)

Trace: Illustration

Trace probability

To compute the probability of a trace we multiply all individual policy and transition
probabilities in the trace (= product rule of probability)

Trace probability

To compute the probability of a trace we multiply all individual policy and transition
probabilities in the trace (= product rule of probability)

Trace probability

To compute the probability of a trace we multiply all individual policy and transition
probabilities in the trace (= product rule of probability)

Trace probability

The probability of the full trace is equal to

To compute the probability of a trace we multiply all individual policy and transition
probabilities in the trace (= product rule of probability)

Trace probability

the probability we select the first action

To compute the probability of a trace we multiply all individual policy and transition
probabilities in the trace (= product rule of probability)

Trace probability

times the probability we observe the first reward and next state

To compute the probability of a trace we multiply all individual policy and transition
probabilities in the trace (= product rule of probability)

Trace probability

times the probability we select a certain next action

To compute the probability of a trace we multiply all individual policy and transition
probabilities in the trace (= product rule of probability)

Trace probability

etc.

Trace probability: Illustration

Trace probability: Illustration

Trace probability: Illustration

Assume a random policy.
Give the probability of

Trace probability: Illustration

Assume a random policy.
Give the probability of

Trace probability: Illustration

0.5

1.0

Assume a random policy.
Give the probability of

Trace probability: Illustration

Assume a random policy.
Give the probability of

Trace probability: Illustration

0.5

1.0

0.5
1.0

Assume a random policy.
Give the probability of

Trace probability: Illustration

Assume a random policy.
Give the probability of

Trace probability: Illustration

0.5

1.0

0.5

0.1

Assume a random policy.
Give the probability of

Trace probability: Illustration

Assume a random policy.
Give the probability of

Trace probability: Illustration

0.5

1.0

0.5

0.9

Assume a random policy.
Give the probability of

Distribution adds up to 1.0 again

Trace probability: Illustration

Part IV:

Return

What makes a trace actually good?

Return

Each trace also achieves a certain sum of rewards,

which we call the cumulative reward or return

Return

Each trace also achieves a certain sum of rewards,

which we call the cumulative reward or return

Return

Each trace also achieves a certain sum of rewards,

which we call the cumulative reward or return

Return

The return R of trace τ

Each trace also achieves a certain sum of rewards,

which we call the cumulative reward or return

Return

The return R of trace τ is the sum of first reward, second reward, third reward, etc.

Return: Illustration

Question: What is the return of the trace [Home, Study, Uni, Study, Fail Exam]?
Answer:

Return: Illustration

Question: What is the return of the trace [Home, Study, Uni, Study, Fail Exam]?
Answer: (-1) + (-10) = -11

Return: Illustration

Discounted return

We may downweight long-term rewards, which we call the discounted return

Discounted return

We may downweight long-term rewards, which we call the discounted return

Discounted return

We may downweight long-term rewards, which we call the discounted return

Discounted return

We may downweight long-term rewards, which we call the discounted return

Exponentially downweight future rewards

Discounted return

Parameter we set ourselves (part of MDP definition)

Discount factor (γ)

Parameter we set ourselves (part of MDP definition)

Question: What happens if we use γ=0.0?

Discount factor (γ)

Parameter we set ourselves (part of MDP definition)

Question: What happens if we use γ=0.0?
Answer: Myopic/greedy agent - only cares about immediate reward

Discount factor (γ)

Parameter we set ourselves (part of MDP definition)

Question: What happens if we use γ=1.0?

Discount factor (γ)

Parameter we set ourselves (part of MDP definition)

Question: What happens if we use γ=1.0?
Answer: Long-term agent - rewards from all timesteps contribute equally

Discount factor (γ)

Spectrum of discount value choices

Spectrum of discount value choices

γ=1.0γ=0.0

myopic agent long-term agent

We ideally want γ=1.0, i.e., full sequential decision-making

Spectrum of discount value choices

γ=1.0γ=0.0

myopic agent long-term agent

In practice we may set it slightly lower, e.g., γ=0.99, for

Spectrum of discount value choices

γ=1.0γ=0.0

myopic agent long-term agent

In practice we may set it slightly lower, e.g., γ=0.99, for
- Numerical stability (ensure the sum of rewards stays bounded/finite)

Spectrum of discount value choices

γ=1.0γ=0.0

myopic agent long-term agent

In practice we may set it slightly lower, e.g., γ=0.99, for
- Numerical stability (ensure the sum of rewards stays bounded/finite)
- Implicitly enforcing an agent to take as little steps a possible (since every extra step

discounts the next obtained rewards - useful when there are transitions with r=0)

Spectrum of discount value choices

γ=1.0γ=0.0

myopic agent long-term agent

For this course we will mostly fix it at γ=1.0

Spectrum of discount value choices

γ=1.0γ=0.0

myopic agent long-term agent

Discounted return: Illustration

Use γ=0.9
Question: What is the discounted return of the trace [Home, Study, Uni, Go Out, Bar]?

Discounted return: Illustration

Use γ=0.9
Question: What is the discounted return of the trace [Home, Study, Uni, Go Out, Bar]?
Answer: -1 + 0.9 · 2.0 = 0.8

(Note the difference - the second reward now has smaller weight than the first)

Discounted return: Illustration

Trace Horizon

(sum notation)

Trace Horizon

Infinite-horizon return:

‘we keep summing rewards unless we reach a terminal state’

Trace Horizon

Infinite-horizon return:

‘we keep summing rewards unless we reach a terminal state’

(there are also finite-horizon MDPs, but we don’t cover them)

Trace Horizon

Part VI:

Value

Cumulative reward (= return)

Value

Cumulative reward (= return)
Expected cumulative reward

Value

Cumulative reward (= return)
Expected cumulative reward

What sum of rewards do we expect on average for a particular policy

Value

Cumulative reward (= return)
Expected cumulative reward

Value

Cumulative reward (= return)
Expected cumulative reward

We call this the value of a state s:

Value

Cumulative reward (= return)
Expected cumulative reward

We call this the value of a state s:

Given a certain policy, how much total reward do we expect to get from s in the future

Value

State value: Illustration

State value: Illustration

Question: Assume a random policy.
Can we compute v(Home)?
(Note: already computed this at the lecture start)

State value: Illustration

Question: Assume a random policy.
Can we compute v(Home)?

List all possible traces from Home

State value: Illustration

Question: Assume a random policy.
Can we compute v(Home)?

List all possible traces from Home with their probability

State value: Illustration

Question: Assume a random policy.
Can we compute v(Home)?

List all possible traces from Home with their probability and obtained return (sum of rewards)

State value: Illustration

Question: Assume a random policy.
Can we compute v(Home)?

Reweight each return based on its probability

State value: Illustration

Question: Assume a random policy.
Can we compute v(Home)?

Answer: v(Home) = 3.0
(Matches our earlier computation!)

Reweight each return based on its probability and add up to get the value (expected return)

State value: Illustration

Question: Assume a random policy.
Can do the same for all other states.
So what is v(Bar)?

State value: Illustration

Question: Assume a random policy.
Can do the same for all other states.
So what is v(Bar)?

Answer: v(Bar) =0.0

The value of a terminal state is always 0.0, since we can never obtain any reward from it!

State value: Illustration

Value function

The state value V(s) is a function: every state has its own value given a certain policy.

Value function

The state value V(s) is a function: every state has its own value given a certain policy.

Can represent this in memory as a table of size |S|

Value function

The state value V(s) is a function: every state has its own value given a certain policy.

Can represent this in memory as a table of size |S|

Value function

The state value V(s) is a function: every state has its own value given a certain policy.

Can represent this in memory as a table of size |S|

Value function

The state value V(s) is a function: every state has its own value given a certain policy.

Can represent this in memory as a table of size |S|

Check v(Uni) yourself by listing all possible traces from Uni, their probability and return

Value function

State-action value

We can equally define the value of a state-action pair

State-action value

We can equally define the value of a state-action pair

State-action value

We can equally define the value of a state-action pair

Exact same principle as before, but now we also condition on the first action we take

State-action value

State-action value function

The state value q(s,a) is a function: every state-action has its own value given a certain policy.

State-action value function

The state value q(s,a) is a function: every state-action has its own value given a certain policy.

Can represent this in memory as a table of size |S| x |A|

State-action value function

The state value q(s,a) is a function: every state-action has its own value given a certain policy.

Can represent this in memory as a table of size |S| x |A|

State-action value function

The state value q(s,a) is a function: every state-action has its own value given a certain policy.

Can represent this in memory as a table of size |S| x |A|

State-action value function

Optimal value & policy

Optimal value function

The best value we can achieve from every state/state-action

Optimal value function

The best value we can achieve from every state/state-action

Notation: ,

Optimal value function

The best value we can achieve from every state/state-action

Notation: ,

Optimal value function

The best value we can achieve from every state/state-action

Notation: ,

Optimal value function

q* = 2.0 q* = 8.0

q* = 7.0q* = 2.0

The best value we can achieve from every state/state-action

Notation: ,

Optimal value function

q* = 2.0 q* = 8.0

q* = 7.0q* = 2.0

It is impossible to achieve more
than 7.0 on average from

(Home, Study)

The best value we can achieve from every state/state-action

Notation: ,

Each MDP has only one optimal value function = best we can achieve with optimal behaviour

Optimal value function

q* = 2.0 q* = 8.0

q* = 7.0q* = 2.0

It is impossible to achieve more
than 7.0 on average from

(Home, Study)

Optimal policy

A policy that obtains the optimal value function.

Optimal policy

A policy that obtains the optimal value function.

Notation:

Optimal policy

A policy that obtains the optimal value function.

Notation:

Intuition: In principle the greedy (max) policy

Optimal policy

A policy that obtains the optimal value function.

Notation:

Intuition: In principle the greedy (max) policy

Optimal policy

A policy that obtains the optimal value function.

Notation:

Intuition: In principle the greedy (max) policy

Optimal policy

q*=2 q*=7

A policy that obtains the optimal value function.

Notation:

Intuition: In principle the greedy (max) policy

Optimal policy

q*=2 q*=7 π*(Home)=Study

A policy that obtains the optimal value function.

Notation:

Intuition: In principle the greedy (max) policy

Optimal policy

q*=7 q*=7

A policy that obtains the optimal value function.

Notation:

Intuition: In principle the greedy (max) policy

Optimal policy

q*=7 q*=7 π*(Home)=Study
or
π*(Home)=Go Out

A policy that obtains the optimal value function.

Notation:

Intuition: In principle the greedy (max) policy

When we have ties we can arbitrarily break them

Optimal policy

q*=7 q*=7 π*(Home)=Study
or
π*(Home)=Go Out

A policy that obtains the optimal value function.

Notation:

Intuition: In principle the greedy (max) policy

When we have ties we can arbitrarily break them
(i.e., therefore there can theoretically be more than one optimal policy)

Optimal policy

q*=7 q*=7 π*(Home)=Study
or
π*(Home)=Go Out

A policy that obtains the optimal value function.

Notation:

Intuition: In principle the greedy (max) policy

When we have ties we can arbitrarily break them
(i.e., therefore there can theoretically be more than one optimal policy)

(but they all have the same optimal value function)

Optimal policy

q*=7 q*=7 π*(Home)=Study
or
π*(Home)=Go Out

Summary

- Policy: We act in the MDP according to a policy
π(a|s)

Summary

- Policy: We act in the MDP according to a policy
π(a|s)

- Trace: When we act with the policy we induce a sequence of (s,a,r) pairs, i..e, a trace.
τ

Summary

- Policy: We act in the MDP according to a policy
π(a|s)

- Trace: When we act with the policy we induce a sequence of (s,a,r) pairs, i..e, a trace.
τ

- Return: Each such trace has a certain (discounted) cumulative reward, i.e., a return.
R(τ)

Summary

- Policy: We act in the MDP according to a policy
π(a|s)

- Trace: When we act with the policy we induce a sequence of (s,a,r) pairs, i..e, a trace.
τ

- Return: Each such trace has a certain (discounted) cumulative reward, i.e., a return.
R(τ)

- Value: Given a policy, each state(-action) has an average/expected return, i.e., a value.
vπ(s), qπ(s,a)

Summary

- Policy: We act in the MDP according to a policy
π(a|s)

- Trace: When we act with the policy we induce a sequence of (s,a,r) pairs, i..e, a trace.
τ

- Return: Each such trace has a certain (discounted) cumulative reward, i.e., a return.
R(τ)

- Value: Given a policy, each state(-action) has an average/expected return, i.e., a value.
vπ(s), qπ(s,a)

- Optimal value/policy: There is only one optimal value function, with a greedy/max policy.
v*(s), q*(s,a), π*(s)

Summary

At Home

Read Sutton & Barto, Chapter 3

At Home

At Home (by hand)

1. Draw your own MDP

At Home (by hand)

1. Draw your own MDP, e.g.:

At Home (by hand)

1. Draw your own MDP, e.g.:

2. Define a policy in this MDP

At Home (by hand)

1. Draw your own MDP, e.g.:

2. Define a policy in this MDP

3. Compute a trace distribution

At Home (by hand)

1. Draw your own MDP, e.g.:

2. Define a policy in this MDP

3. Compute a trace distribution

4. Compute the returns of these traces

At Home (by hand)

1. Draw your own MDP, e.g.:

2. Define a policy in this MDP

3. Compute a trace distribution

4. Compute the returns of these traces

5. Compute v(s) and q(s,a) for your policy

At Home (by hand)

At Home (code)

Go to Colab: http://tiny.cc/ntbjvz

At Home (code)

http://tiny.cc/ntbjvz

Go to Colab: http://tiny.cc/ntbjvz

At Home (code)

http://tiny.cc/ntbjvz

Go to Colab: http://tiny.cc/ntbjvz

At Home (code)

Interactive code for lecture
material: play around and make

sure you understand!

http://tiny.cc/ntbjvz

Next Week

1. Bellman Equation

Recursive relation between the state(-action) values

Next Week

1. Bellman Equation

Recursive relation between the state(-action) values

2. Dynamic programming

Use this recursive relation to efficiently find the optimal value function & policy

Next Week

Questions?

