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Planning/Search

Any type of lookahead search in a model to determine good actions
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Planning/Search

In the limit (exhaustive search) always gives the optimal action

In practice computationally infeasible: requires bd samples

All search algorithms try to improve the visitation order
(i.e., reduce the width and depth of the search) 

b=branching factor (# actions)
d= depth
(we for now ignore stochastic transitions)



Content

1. Types of planning  (decision-time versus background)

2. Classic planning (uninformed & heuristic search)

Break

3. Sample-based planning (Monte Carlo Search, Sparse Sampling, Monte Carlo Tree 
Search)

4. Iterated planning and learning
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Type of planning

Background planning

Use lookahead in model to update a global 
(value/policy) solution

(improve overall solution – may be called 
‘learning’)

e.g. Dynamic Prog. (Ch. 4), Dyna (Ch. 8)

(Traditionally: smaller tree)

Decision-time planning

Use lookahead in model to find a good action 
for a current state s

(focus all budget on current decision)

e.g. A*, MCTS (Ch. 8)

(Traditionally: larger tree, afterward discarded)

Main topic of today
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Both planning types can be combined

Arbitrarily small/large search

1. update overall solution
(background/learning)

2. select an action
(decision-time)

and/or

Discuss combined combined planning 
& learning at  end of this lecture

may also revert
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best path
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Q: Can a tree search spend useless compute? 
A: Yes, because the same next state may appear in multiple directions

Q: What could be a solution? 
A: Turn the tree search into a graph search
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Tree versus graph search

Build a graph: only generate each 
unique state once, and build a 
search tree connecting them
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Tree versus graph search

Q: Can a tree search spend useless compute? 
A: Yes, because the same next state may appear in multiple directions

Q: What could be a solution? 
A: Turn the tree search into a graph search

Q: What do we need to store/change for this? 
A: Track an open list (frontier) and closed list (explored set)
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Closed & Open list

1. Closed list
Fully expanded

2. Open list = Frontier
Next candidates for expansion

Key idea: 
- Track every node in the graph (open/closed)

and the optimal path towards is
- Update these lists with every expansion 

(is this new expansion already in my closed or open list?)
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Main challenge of planning

In what order shall we visit state-actions? 
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Uninformed search

Can you give some example of uninformed search strategies? 

- Breadth-first search

- Depth-first search

- Iterative deepening

- Uniform cost search / Dijkstra’s algorithm (weighted graphs) 
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Uninformed search

What is the downside of breadth/depth first search? 

- Can be suboptimal if the weight (reward/cost) per edge varies (ignored by DFS/BFS)

(BFS would expand the first action, but the second has lowest cost)

‘cost’
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same formulation 
(cost = negative reward)
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Uninformed search

What is the downside of breadth/depth first search? 

- Can be suboptimal if the weight (reward/cost) per edge varies (ignored by DFS/BFS)

What is a potential solution? 

- Expand the node which currently looks most promising
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Uniform cost search / Dijkstra’s algorithm 

Note: only useful with non-uniform 
rewards/cost/edge weights

Q: What does this reduce to with 
uniform rewards? 
A: Breadth-first search
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Uniform cost search / Dijkstra’s algorithm 

What is the downside of uniform cost search? 

- We only look at the cost of the tree path g(s), but not at the remaining potential 
afterwards h(s)

What is a potential solution? 

- Construct a heuristic function h(s) to predict the remaining potential
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g(s) & h(s)

f(s) = g(s) + h(s)

g(s) = actual cumulative cost from start to state s
h(s) = estimated cumulative cost from s to end

s endstart
g(s) h(s)
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Best-first search

We want a general prioritization function f(s) to indicate what state to expand next 



Best-first search



f(s) = g(s) Dijkstra’s algorithm/Uniform-cost search

sstart
g(s)

Best-first search



f(s) = g(s) Dijkstra’s algorithm/Uniform-cost search
f(s) = g(s) + h(s) Greedy best-first search

s end
h(s)

Best-first search



f(s) = g(s) Dijkstra’s algorithm/Uniform-cost search
f(s) = g(s) + h(s) Greedy best-first search
f(s) = g(s) + h(s) A* search

s endstart
g(s) h(s)

Best-first search
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A* search

Expand state with 
best g(s) + h(s)
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Heuristic

Heuristic function h(s) is typically obtained from prior domain-knowledge or relaxations

Q: The heuristic h(s) needs to be admissible: it should always be equal to or optimistic 
about the remaining cumulative cost. Why? 
A: This ensures optimality: we never skip an arm because of a too pessimistic heuristic. 

Q: Why don’t we then just initialize the heuristic h(s)=0 for every possible state? 
A: This heuristic is completely uninformative: does not give any actual priority

Q: What is the perfect heuristic function?
A: The optimal value function: h(s) = V*(s)! (The true optimal cumulative cost – You can 
see RL as learning the perfect heuristic – upon convergence eliminates the complete 
need for planning)
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Reducing width

Heuristic are a way to reduce the depth of a search. Can we also reduce the width? 

Forward pruning

(directly eliminate some of the available actions)

Simplest implementation: beam search (only keep best M candidates at every depth)
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Beam search

 

- Expand children
- Select M best children

etc. 



Beam search

 

- Expand children
- Select M best children
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Q: What is the risk of forward pruning? 



Forward pruning

Q: What is the risk of forward pruning? 

A: We may prune away optimal actions, and therefore we lose all optimality guarantees
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Stochastic dynamics 

Classic planning primarily focused on deterministic settings. 

Can we also apply it to the full stochastic MDP setting? 
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Yes, algorithms typically have their stochastic extension, where we unfold all possible 
states below an action (instead of only one state)

Example: A* —> AO* (AND-OR)

- OR = MAX = action selection

- AND = EXP expectation over dynamics

or/max

and/exp
0.3 0.70.9 0.1



AO*

Yes, algorithms typically have their stochastic extension, where we unfold all possible 
states below an action (instead of only one state)

Example: A* —> AO* (AND-OR)

- OR = MAX = action selection

- AND = EXP expectation over dynamics

MDP = MAX-EXP graph = AND-OR graph

or/max

and/exp
0.3 0.70.9 0.1
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Stochastic dynamics 

Q: What could be the problems of classic search in stochastic settings? 

A: 
1) Need an analytic model (often only a simulator is available, no exact probabilities)

2) Makes the search wide (since we need to expand all possible next states, which 
gives an extra/double branching factor)
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Challenges of heuristic search

Heuristic search is efficient in deterministic problems where a good heuristic is available, 
but in many problems also faces it challenges:  

- Required depth: heuristic necessary to reduce depth, but often not available

- Required width: action pruning is risky, and stochastic dynamics make the search 
even wider

- Required model: needs analytic transition probabilities, but often only a simulator 
is available 

Alternative solution: sample-based planning



Break



3. Sample-based Planning
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Sample-based planning

‘Roll-out algorithms’

(Sutton & Barto)
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Sample-based planning

Replace the concept of 
systematic enumeration

With statistical/probabilistic/Monte 
Carlo estimation of action values
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Potential benefits of sample-based planning

Depth: 
- No need for a heuristic (instead use a Monte Carlo roll-out) 

Width: 
- No need for forward pruning of actions (decide based on uncertainty principles)
- No need to expand all stochastic dynamics (simply sample one)

Model:
- No need for exact transition probabilities (only needs a simulator)

Some algorithms still retain probabilistic convergence guarantees (in the limit)
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Monte Carlo Search

Main idea: 

1) Use roll-outs to estimate of mean return of each action (‘Monte Carlo estimation’) 

2) Select the action with the highest mean return (‘Uniform bandit algorithm’)
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Monte Carlo Search

s

a1 a2

A=2

N=3

D=100
Roll each of 

them out until 
depth D=100 
with some 

roll-out policy

For each of 
the A actions

Sample N 
trajectories

Sample complexity: A ⋅ N ⋅ D

Select action with the 
highest mean return
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Monte Carlo Search: Roll-out policy

Performance of Monte Carlo search depends on the quality of the roll-out policy

- Uninformed version: Random policy (default choice)

- Informed version: May use better prior roll-out policy when available  
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- The Q(s,a) value of that action under the roll-out policy
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Monte Carlo Search: Interpretation

What does the mean return of each action in Monte Carlo Search actually estimate? 
- The Q(s,a) value of that action under the roll-out policy

We then greedily select the action with the highest value
- A form of local, one-step policy improvement over the prior roll-out policy

s

a1 a2

Qroll-out(s,a)≈2 Qroll-out(s,a)≈5 
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Monte Carlo Search: Downside

Can you think of a downside of Monte Carlo Search? 

It does not store any statistics or do any policy improvement below depth 1 

black box: not changing your 
policy based on the search
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Sparse sampling

Main idea: Repeat the same process at deeper levels
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Sparse sampling

s

a1 a2

A=2

N=3

Now also do policy 
improvement at deeper levels
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Sparse sampling

s

a1 a2

A=2

N=3

D=100

Sample complexity: (A⋅ N)D

In the end select action with 
the highest mean return
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Sparse sampling

What is the problem with sparse sampling? 
- It’s very expensive (exponential in D). Not complete enumeration, but still spends 

much effort in poorly performing directions. 

Can you think of a solution? 
- Adaptive Monte Carlo methods → replace Uniform sampling with an adaptive 

bandit algorithm (Ch. 2) that focuses in directions where initial samples perform 
well (trading-off exploration & exploitation). 
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Monte Carlo Tree Search (MCTS)

Main idea: iteratively apply adaptive bandit algorithm at every depth

Breakthrough performance in the game of Go

Naturally 
produces an 
asymmetric 
search tree

Extends deeper in 
directions where 

initial samples giving 
promising returns

(sample-based 
equivalent of 

prioritized search)
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Four phases of MCTS

Each iteration makes one roll-out, that moves through four phases. 
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mean return of previous traces
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Selection

- Apply a bandit algorithm to select the most promising action
(balances exploration & exploitation)

- Most common choice: 
Upper Confidence Bounds applied to Trees (UCT)

n(s) = number of traces through state
n(s,a) = number of traces through state-action

(exploration: lower n(s,a) → higher second term)
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Selection

- Apply a bandit algorithm to select the most promising action
(balances exploration & exploitation)

- Most common choice: 
Upper Confidence Bounds applied to Trees (UCT)

- What is the UCT value of an untried action [n(s,a)=0]? 
- We treat the second term as infinity (divide over 0) and therefore always 

select an untried action when available (=expand)
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Expansion

- Once we reach an unvisited action, expand it 
(i.e. add child state and its actions to the tree)

- Each iteration expands the tree with only one new state. Why? 

- Could store everything below but eats away memory 
and compute. We only start storing a deeper state once 
we repeatedly visited that direction.
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Simulation

Again use Monte Carlo roll-out as an estimate of the value 
of the expanded state

- Default = random policy, can use better prior policy 
when available. 

- Note max total depth D (so if current leaf at depth 5 
with D=100, then you roll-out for length 95)
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Backup

Update the statistics throughout the tree to direct the next iteration

- Action nodes: store visit count n(s,a) and mean return Q(s,a) 

- State nodes: store visit count n(s)

Or compute them as ∑a n(s,a) 
once needed

May also store the return sum 
of all traces through (s,a) as 

Rsum(s,a) and compute Q(s,a) = 
Rsum(s,a)/n(s,a)
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s

a1 a2

Q=0

n=0

Q=0

n=0

1. Select
2. Expand
3. Roll-out
4. Back-up

Initialize mean action return (Q(s,a)) and 
count (n(s,a)) to 0
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Q=0
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Q=0
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1. Select
2. Expand
3. Roll-out
4. Back-up

Both actions untried (n=0), randomly pick one

Select next action based on UCT rule: 



Monte Carlo Tree Search 

s

a1 a2

Q=0

n=0

Q=0

n=0

1. Select
2. Expand
3. Roll-out
4. Back-up

We expand the tree once we 
encounter an untried action

r=1
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s

a1 a2

Q=5

n=1

Q=0

n=0

1. Select
2. Expand
3. Roll-out
4. Back-up

r=1

First iteration, repeat!
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Untried action always selected 
(=expand a2)

r=1
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Second iteration, repeat!
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Q=5, n(s,a)=1, n(s)=2
UCT = 5.8

Q=-1, n(s,a)=1, n(s)=2
UCT = -0.2
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a1 a2

Q=5

n=1

Q=-1

n=1

1. Select
2. Expand
3. Roll-out
4. Back-up
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No untried action left, so now we really use the UCT select rule (assume c=1.0)

Q=5, n(s,a)=1, n(s)=2
UCT = 5.8
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UCT = -0.2
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Q=5

n=1

Q=-1

n=1
r=-2r=1

1. Select
2. Expand
3. Roll-out
4. Back-up

Now we need to select at 
this state at depth 1. 
What will happen? 
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a1 a2

Q=0

n=0

Q=0

n=0

Q=5

n=1

Q=-1

n=1
r=-2r=1

1. Select
2. Expand
3. Roll-out
4. Back-up

Unvisited actions, need to expand, 
randomly pick one of the available actions



Monte Carlo Tree Search 

s

a1 a2

Q=0

n=0

Q=0

n=0

Q=5

n=1

Q=-1

n=1
r=-2r=1

1. Select
2. Expand
3. Roll-out
4. Back-up

r=0



Monte Carlo Tree Search 

s

a1 a2

Rsum= 9

Q=0

n=0

Q=0

n=0

Q=5

n=1

Q=-1

n=1
r=-2r=1

1. Select
2. Expand
3. Roll-out
4. Back-up

r=0



Monte Carlo Tree Search 

s

a1 a2

Rsum= 9

Q=0

n=0

Q=0

n=0

Q=5

n=1

Q=-1

n=1
r=-2r=1

1. Select
2. Expand
3. Roll-out
4. Back-up

r=0
?



Monte Carlo Tree Search 

s

a1 a2

Rsum= 9

Q=0

n=0

Q=9

n=1

Q=5

n=1

Q=-1

n=1
r=-2r=1

1. Select
2. Expand
3. Roll-out
4. Back-up

r=0
?



Monte Carlo Tree Search 

s

a1 a2

Rsum= 9

Q=0

n=0

Q=9
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Q=5

n=1

Q=-1

n=1
r=-2r=1

1. Select
2. Expand
3. Roll-out
4. Back-up

r=0

?



Monte Carlo Tree Search 

s

a1 a2

Rsum= 9

Q=0

n=0

Q=9

n=1

Q=7.5

n=2

Q=-1

n=1
r=-2r=1

1. Select
2. Expand
3. Roll-out
4. Back-up

r=0
Incremental update of the mean 

(see Lecture on bandits)

Qnew ← Qold + (1/n) ⋅ [Rsum - Qold]

5 + ½ ⋅ [10 - 5] = 7.5
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Monte Carlo Tree Search 

s

a1 a2

Q=0

n=0

Q=9

n=1

Q=7.5

n=2

Q=-1

n=1
r=-2r=1

1. Select
2. Expand
3. Roll-out
4. Back-up

r=0

Third iteration,
repeat until trace budget M is up.  

Sample complexity: M ⋅ D

Note: M in MCTS (total # of 
traces) is not the same as N 

(# of traces per action) in 
MCS and SS

In the end pick action with 
highest mean return Q or 

highest count n
(often equivalent)
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Summary: Monte Carlo Tree Search

- Very powerful search paradigm: adaptively focuses search budget based on 
statistical uncertainty measures.

- One of the most popular algorithms in problems without a good heuristic.
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Pure planning is often suboptimal
-

Uninformed (sample-based) search is too 
expensive & we lack good heuristics

Pure learning is often suboptimal
-

Learned approximate value/policy typically 
has remaining errors

But both approaches can be combined!

Planning versus learning
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AlphaGo

..that are used to train 
(approximate) value and policy 

functions..

Planning.. 

 ..generates statistics..
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AlphaGo

..to steer new planning 
iterations. 

..which we may itself use..
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2) generate training data for learning (‘background planning’). 

… use learned value/policy function to steer new planning iterations.



Iterated planning and learning

Planning Learning

.. use planning to 1) correct errors in learned solution (‘decision-time planning’) and/or 
2) generate training data for learning (‘background planning’). 

… use learned value/policy function to steer new planning iterations.

Both types of 
planning are 

useful/combined in 
this iterated scheme
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Thinking fast & slow

Psychology research, but well interpretable in terms of AI
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Thinking fast & slow

Learned (approximate) value function
= 

‘Thinking fast’

(reactive behaviour based on pattern 
recognition in known situations)

Decision-time planning
= 

‘Thinking slow’ 

(putting local effort in current decision to 
overcome errors in the learned value function)

Both have their role in optimal decision-making!
(more in later lecture on AlphaGo)
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3. Monte Carlo search

4. Iterated planning & learning

 



Summary

1. Decision-time versus background planning

2. Classic planning

3. Monte Carlo search

4. Iterated planning & learning

Questions? 


