
Sample-based Planning

Introduction To Reinforcement Learning, Leiden University, The Netherlands

Thomas Moerland

Planning/Search

Planning/Search

Definition?

Planning/Search

Any type of lookahead search in a model to determine good actions

Planning/Search

Planning/Search

In the limit (exhaustive search) always gives the optimal action

Planning/Search

In the limit (exhaustive search) always gives the optimal action

In practice computationally infeasible: requires … samples

Planning/Search

In the limit (exhaustive search) always gives the optimal action

In practice computationally infeasible: requires bd samples

b=branching factor (# actions)
d= depth
(we for now ignore stochastic transitions)

Planning/Search

In the limit (exhaustive search) always gives the optimal action

In practice computationally infeasible: requires bd samples

All search algorithms try to improve the visitation order
(i.e., reduce the width and depth of the search)

b=branching factor (# actions)
d= depth
(we for now ignore stochastic transitions)

Content

1. Types of planning (decision-time versus background)

2. Classic planning (uninformed & heuristic search)

Break

3. Sample-based planning (Monte Carlo Search, Sparse Sampling, Monte Carlo Tree
Search)

4. Iterated planning and learning

1. Decision-time versus Background planning

Type of planning

Type of planning

Background planning Decision-time planning

Type of planning

Background planning

Use lookahead in model to update a global
(value/policy) solution

(improve overall solution – may be called
‘learning’)

Decision-time planning

Type of planning

Background planning

Use lookahead in model to update a global
(value/policy) solution

(improve overall solution – may be called
‘learning’)

Decision-time planning

Type of planning

Background planning

Use lookahead in model to update a global
(value/policy) solution

(improve overall solution – may be called
‘learning’)

e.g. Dynamic Prog. (Ch. 4), Dyna (Ch. 8)

(Traditionally: smaller tree)

Decision-time planning

Type of planning

Background planning

Use lookahead in model to update a global
(value/policy) solution

(improve overall solution – may be called
‘learning’)

e.g. Dynamic Prog. (Ch. 4), Dyna (Ch. 8)

(Traditionally: smaller tree)

Decision-time planning

Use lookahead in model to find a good action
for a current state s

(focus all budget on current decision)

Type of planning

Background planning

Use lookahead in model to update a global
(value/policy) solution

(improve overall solution – may be called
‘learning’)

e.g. Dynamic Prog. (Ch. 4), Dyna (Ch. 8)

(Traditionally: smaller tree)

Decision-time planning

Use lookahead in model to find a good action
for a current state s

(focus all budget on current decision)

Type of planning

Background planning

Use lookahead in model to update a global
(value/policy) solution

(improve overall solution – may be called
‘learning’)

e.g. Dynamic Prog. (Ch. 4), Dyna (Ch. 8)

(Traditionally: smaller tree)

Decision-time planning

Use lookahead in model to find a good action
for a current state s

(focus all budget on current decision)

e.g. A*, MCTS (Ch. 8)

(Traditionally: larger tree, afterward discarded)

Type of planning

Background planning

Use lookahead in model to update a global
(value/policy) solution

(improve overall solution – may be called
‘learning’)

e.g. Dynamic Prog. (Ch. 4), Dyna (Ch. 8)

(Traditionally: smaller tree)

Decision-time planning

Use lookahead in model to find a good action
for a current state s

(focus all budget on current decision)

e.g. A*, MCTS (Ch. 8)

(Traditionally: larger tree, afterward discarded)

Main topic of today

Both planning types can be combined

Both planning types can be combined

Arbitrarily small/large search

Both planning types can be combined

Arbitrarily small/large search

1. update overall solution
(background/learning)

Both planning types can be combined

Arbitrarily small/large search

1. update overall solution
(background/learning)

2. select an action
(decision-time)

and/or

Both planning types can be combined

Arbitrarily small/large search

1. update overall solution
(background/learning)

2. select an action
(decision-time)

and/or

may also revert

Both planning types can be combined

Arbitrarily small/large search

1. update overall solution
(background/learning)

2. select an action
(decision-time)

and/or

Discuss combined combined planning
& learning at end of this lecture

may also revert

2. Classic Planning

Tree versus graph search

Tree versus graph search

Tree versus graph search

Q: Can a tree search spend useless compute?

Tree versus graph search

Q: Can a tree search spend useless compute?
A: Yes, because the same next state may appear in multiple directions

Tree versus graph search

Tree versus graph search

‘loop’ : same state reappears in a
path → only need to search from
the first appearance

Tree versus graph search

redundant path: same state
appears in different arms → only
need to continue the search in the
best path

Tree versus graph search

Q: Can a tree search spend useless compute?
A: Yes, because the same next state may appear in multiple directions

Q: What could be a solution?

Tree versus graph search

Q: Can a tree search spend useless compute?
A: Yes, because the same next state may appear in multiple directions

Q: What could be a solution?
A: Turn the tree search into a graph search

Tree versus graph search

Tree versus graph search

Tree versus graph search

Build a graph: only generate each
unique state once, and build a
search tree connecting them

Tree versus graph search

Q: Can a tree search spend useless compute?
A: Yes, because the same next state may appear in multiple directions

Q: What could be a solution?
A: Turn the tree search into a graph search

Q: What do we need to store/change for this?

Tree versus graph search

Q: Can a tree search spend useless compute?
A: Yes, because the same next state may appear in multiple directions

Q: What could be a solution?
A: Turn the tree search into a graph search

Q: What do we need to store/change for this?
A: Track an open list (frontier) and closed list (explored set)

Closed & Open list

Closed & Open list

Closed & Open list

1. Closed list
Fully expanded

Closed & Open list

1. Closed list
Fully expanded

2. Open list = Frontier
Next candidates for expansion

Closed & Open list

1. Closed list
Fully expanded

2. Open list = Frontier
Next candidates for expansion

Key idea:
- Track every node in the graph (open/closed)

and the optimal path towards is

Closed & Open list

1. Closed list
Fully expanded

2. Open list = Frontier
Next candidates for expansion

Key idea:
- Track every node in the graph (open/closed)

and the optimal path towards is
- Update these lists with every expansion

(is this new expansion already in my closed or open list?)

Main challenge of planning

Main challenge of planning

In what order shall we visit state-actions?

Uninformed search

Can you give some example of uninformed search strategies?

Uninformed search

Can you give some example of uninformed search strategies?

- Breadth-first search

- Depth-first search

- Iterative deepening

- Uniform cost search / Dijkstra’s algorithm (weighted graphs)

Uninformed search

Uninformed search

Uninformed search

What is the downside of breadth/depth first search?

Uninformed search

What is the downside of breadth/depth first search?

- Can be suboptimal if the weight (reward/cost) per edge varies (ignored by DFS/BFS)

Uninformed search

What is the downside of breadth/depth first search?

- Can be suboptimal if the weight (reward/cost) per edge varies (ignored by DFS/BFS)

(BFS would expand the first action, but the second has lowest cost)

‘cost’

Reward versus Cost

Reward versus Cost

Reinforcement learning

Maximize the cumulative reward

Planning

Minimize the cumulative cost

Reward versus Cost

Reinforcement learning

Maximize the cumulative reward

Planning

Minimize the cumulative cost =

same formulation
(cost = negative reward)

Reward versus Cost

Reinforcement learning

Maximize the cumulative reward

Planning

Minimize the cumulative cost =

same formulation
(cost = negative reward)

Reward versus Cost

Reinforcement learning

Maximize the cumulative reward

Planning

Minimize the cumulative cost =

same formulation
(cost = negative reward)

Uninformed search

What is the downside of breadth/depth first search?

- Can be suboptimal if the weight (reward/cost) per edge varies (ignored by DFS/BFS)

Uninformed search

What is the downside of breadth/depth first search?

- Can be suboptimal if the weight (reward/cost) per edge varies (ignored by DFS/BFS)

What is a potential solution?

Uninformed search

What is the downside of breadth/depth first search?

- Can be suboptimal if the weight (reward/cost) per edge varies (ignored by DFS/BFS)

What is a potential solution?

- Expand the node which currently looks most promising

Uniform cost search / Dijkstra’s algorithm

Uniform cost search / Dijkstra’s algorithm

Uniform cost search / Dijkstra’s algorithm

Note: only useful with non-uniform
rewards/cost/edge weights

Q: What does this reduce to with
uniform rewards?

Uniform cost search / Dijkstra’s algorithm

Note: only useful with non-uniform
rewards/cost/edge weights

Q: What does this reduce to with
uniform rewards?
A: Breadth-first search

Uniform cost search / Dijkstra’s algorithm

Uniform cost search / Dijkstra’s algorithm

What is the downside of uniform cost search?

Uniform cost search / Dijkstra’s algorithm

What is the downside of uniform cost search?

- We only look at the cost of the tree path g(s), but not at the remaining potential
afterwards h(s)

Uniform cost search / Dijkstra’s algorithm

What is the downside of uniform cost search?

- We only look at the cost of the tree path g(s), but not at the remaining potential
afterwards h(s)

What is a potential solution?

Uniform cost search / Dijkstra’s algorithm

What is the downside of uniform cost search?

- We only look at the cost of the tree path g(s), but not at the remaining potential
afterwards h(s)

What is a potential solution?

- Construct a heuristic function h(s) to predict the remaining potential

g(s) & h(s)

g(s) & h(s)

f(s) = g(s) + h(s)

g(s) = actual cumulative cost from start to state s

sstart
g(s)

g(s) & h(s)

f(s) = g(s) + h(s)

g(s) = actual cumulative cost from start to state s
h(s) = estimated cumulative cost from s to end

s endstart
g(s) h(s)

Best-first search

Best-first search

We want a general prioritization function f(s) to indicate what state to expand next

Best-first search

f(s) = g(s) Dijkstra’s algorithm/Uniform-cost search

sstart
g(s)

Best-first search

f(s) = g(s) Dijkstra’s algorithm/Uniform-cost search
f(s) = g(s) + h(s) Greedy best-first search

s end
h(s)

Best-first search

f(s) = g(s) Dijkstra’s algorithm/Uniform-cost search
f(s) = g(s) + h(s) Greedy best-first search
f(s) = g(s) + h(s) A* search

s endstart
g(s) h(s)

Best-first search

A* search

A* search

A* search

Expand state with
best g(s) + h(s)

Heuristic

Heuristic

Heuristic function h(s) is typically obtained from prior domain-knowledge or relaxations

Heuristic

Heuristic function h(s) is typically obtained from prior domain-knowledge or relaxations

Q: The heuristic h(s) needs to be admissible: it should always be equal to or optimistic
about the remaining cumulative cost. Why?

Heuristic

Heuristic function h(s) is typically obtained from prior domain-knowledge or relaxations

Q: The heuristic h(s) needs to be admissible: it should always be equal to or optimistic
about the remaining cumulative cost. Why?
A: This ensures optimality: we never skip an arm because of a too pessimistic heuristic.

Heuristic

Heuristic function h(s) is typically obtained from prior domain-knowledge or relaxations

Q: The heuristic h(s) needs to be admissible: it should always be equal to or optimistic
about the remaining cumulative cost. Why?
A: This ensures optimality: we never skip an arm because of a too pessimistic heuristic.

Q: Why don’t we then just initialize the heuristic h(s)=0 for every possible state?

Heuristic

Heuristic function h(s) is typically obtained from prior domain-knowledge or relaxations

Q: The heuristic h(s) needs to be admissible: it should always be equal to or optimistic
about the remaining cumulative cost. Why?
A: This ensures optimality: we never skip an arm because of a too pessimistic heuristic.

Q: Why don’t we then just initialize the heuristic h(s)=0 for every possible state?
A: This heuristic is completely uninformative: does not give any actual priority

Heuristic

Heuristic function h(s) is typically obtained from prior domain-knowledge or relaxations

Q: The heuristic h(s) needs to be admissible: it should always be equal to or optimistic
about the remaining cumulative cost. Why?
A: This ensures optimality: we never skip an arm because of a too pessimistic heuristic.

Q: Why don’t we then just initialize the heuristic h(s)=0 for every possible state?
A: This heuristic is completely uninformative: does not give any actual priority

Q: What is the perfect heuristic function?

Heuristic

Heuristic function h(s) is typically obtained from prior domain-knowledge or relaxations

Q: The heuristic h(s) needs to be admissible: it should always be equal to or optimistic
about the remaining cumulative cost. Why?
A: This ensures optimality: we never skip an arm because of a too pessimistic heuristic.

Q: Why don’t we then just initialize the heuristic h(s)=0 for every possible state?
A: This heuristic is completely uninformative: does not give any actual priority

Q: What is the perfect heuristic function?
A: The optimal value function: h(s) = V*(s)! (The true optimal cumulative cost – You can
see RL as learning the perfect heuristic – upon convergence eliminates the complete
need for planning)

Reducing width

Reducing width

Heuristic are a way to reduce the depth of a search. Can we also reduce the width?

Reducing width

Heuristic are a way to reduce the depth of a search. Can we also reduce the width?

Forward pruning

(directly eliminate some of the available actions)

Reducing width

Heuristic are a way to reduce the depth of a search. Can we also reduce the width?

Forward pruning

(directly eliminate some of the available actions)

Simplest implementation: beam search (only keep best M candidates at every depth)

Beam search

- Expand children
- Select M best children

Beam search

- Expand children
- Select M best children

Beam search

- Expand children
- Select M best children

‘forward pruning’

Beam search

- Expand children
- Select M best children

Beam search

- Expand children
- Select M best children

Beam search

- Expand children
- Select M best children

Beam search

- Expand children
- Select M best children

Beam search

- Expand children
- Select M best children

etc.

Beam search

- Expand children
- Select M best children

Forward pruning

Forward pruning

Q: What is the risk of forward pruning?

Forward pruning

Q: What is the risk of forward pruning?

A: We may prune away optimal actions, and therefore we lose all optimality guarantees

Stochastic dynamics

Classic planning primarily focused on deterministic settings.

Stochastic dynamics

Classic planning primarily focused on deterministic settings.

Can we also apply it to the full stochastic MDP setting?

AO*

AO*

Yes, algorithms typically have their stochastic extension, where we unfold all possible
states below an action (instead of only one state)

AO*

Yes, algorithms typically have their stochastic extension, where we unfold all possible
states below an action (instead of only one state)

Example: A* —> AO* (AND-OR)

AO*

Yes, algorithms typically have their stochastic extension, where we unfold all possible
states below an action (instead of only one state)

Example: A* —> AO* (AND-OR)

- OR = MAX = action selection or/max

AO*

Yes, algorithms typically have their stochastic extension, where we unfold all possible
states below an action (instead of only one state)

Example: A* —> AO* (AND-OR)

- OR = MAX = action selection

- AND = EXP expectation over dynamics

or/max

and/exp
0.3 0.70.9 0.1

AO*

Yes, algorithms typically have their stochastic extension, where we unfold all possible
states below an action (instead of only one state)

Example: A* —> AO* (AND-OR)

- OR = MAX = action selection

- AND = EXP expectation over dynamics

MDP = MAX-EXP graph = AND-OR graph

or/max

and/exp
0.3 0.70.9 0.1

Stochastic dynamics

Q: What could be the problems of classic search in stochastic settings?

Stochastic dynamics

Q: What could be the problems of classic search in stochastic settings?

A:
1) Need an analytic model (often only a simulator is available, no exact probabilities)

2) Makes the search wide (since we need to expand all possible next states, which
gives an extra/double branching factor)

Challenges of heuristic search

Challenges of heuristic search

Heuristic search is efficient in deterministic problems where a good heuristic is available

Challenges of heuristic search

Heuristic search is efficient in deterministic problems where a good heuristic is available,
but in many problems also faces it challenges:

Challenges of heuristic search

Heuristic search is efficient in deterministic problems where a good heuristic is available,
but in many problems also faces it challenges:

- Required depth: heuristic necessary to reduce depth, but often not available

Challenges of heuristic search

Heuristic search is efficient in deterministic problems where a good heuristic is available,
but in many problems also faces it challenges:

- Required depth: heuristic necessary to reduce depth, but often not available

- Required width: action pruning is risky, and stochastic dynamics make the search
even wider

Challenges of heuristic search

Heuristic search is efficient in deterministic problems where a good heuristic is available,
but in many problems also faces it challenges:

- Required depth: heuristic necessary to reduce depth, but often not available

- Required width: action pruning is risky, and stochastic dynamics make the search
even wider

- Required model: needs analytic transition probabilities, but often only a simulator
is available

Challenges of heuristic search

Heuristic search is efficient in deterministic problems where a good heuristic is available,
but in many problems also faces it challenges:

- Required depth: heuristic necessary to reduce depth, but often not available

- Required width: action pruning is risky, and stochastic dynamics make the search
even wider

- Required model: needs analytic transition probabilities, but often only a simulator
is available

Alternative solution: sample-based planning

Break

3. Sample-based Planning

Sample-based planning

Sample-based planning

‘Roll-out algorithms’

(Sutton & Barto)

Sample-based planning

Replace the concept of
systematic enumeration

Sample-based planning

Replace the concept of
systematic enumeration

With statistical/probabilistic/Monte
Carlo estimation of action values

Potential benefits of sample-based planning

Potential benefits of sample-based planning

Depth:
- No need for a heuristic (instead use a Monte Carlo roll-out)

Potential benefits of sample-based planning

Depth:
- No need for a heuristic (instead use a Monte Carlo roll-out)

Width:
- No need for forward pruning of actions (decide based on uncertainty principles)
- No need to expand all stochastic dynamics (simply sample one)

Potential benefits of sample-based planning

Depth:
- No need for a heuristic (instead use a Monte Carlo roll-out)

Width:
- No need for forward pruning of actions (decide based on uncertainty principles)
- No need to expand all stochastic dynamics (simply sample one)

Model:
- No need for exact transition probabilities (only needs a simulator)

Potential benefits of sample-based planning

Depth:
- No need for a heuristic (instead use a Monte Carlo roll-out)

Width:
- No need for forward pruning of actions (decide based on uncertainty principles)
- No need to expand all stochastic dynamics (simply sample one)

Model:
- No need for exact transition probabilities (only needs a simulator)

Some algorithms still retain probabilistic convergence guarantees (in the limit)

Monte Carlo Search

Monte Carlo Search

Main idea:

1) Use roll-outs to estimate of mean return of each action (‘Monte Carlo estimation’)

2) Select the action with the highest mean return (‘Uniform bandit algorithm’)

Monte Carlo Search

s

Monte Carlo Search

s

a1 a2

A=2
For each of

the A actions

Monte Carlo Search

s

a1 a2

A=2

N=3

For each of
the A actions

Sample N
trajectories

Monte Carlo Search

s

a1 a2

A=2

N=3

D=100
Roll each of

them out until
depth D=100
with some

roll-out policy

For each of
the A actions

Sample N
trajectories

Monte Carlo Search

s

a1 a2

A=2

N=3

D=100
Roll each of

them out until
depth D=100
with some

roll-out policy

For each of
the A actions

Sample N
trajectories

Select action with the
highest mean return

Monte Carlo Search

s

a1 a2

A=2

N=3

D=100
Roll each of

them out until
depth D=100
with some

roll-out policy

For each of
the A actions

Sample N
trajectories

Sample complexity: ?

Select action with the
highest mean return

Monte Carlo Search

s

a1 a2

A=2

N=3

D=100
Roll each of

them out until
depth D=100
with some

roll-out policy

For each of
the A actions

Sample N
trajectories

Sample complexity: A ⋅ N ⋅ D

Select action with the
highest mean return

Monte Carlo Search: Roll-out policy

Monte Carlo Search: Roll-out policy

Performance of Monte Carlo search depends on the quality of the roll-out policy

Monte Carlo Search: Roll-out policy

Performance of Monte Carlo search depends on the quality of the roll-out policy

- Uninformed version: Random policy (default choice)

Monte Carlo Search: Roll-out policy

Performance of Monte Carlo search depends on the quality of the roll-out policy

- Uninformed version: Random policy (default choice)

- Informed version: May use better prior roll-out policy when available

Monte Carlo Search: Interpretation

Monte Carlo Search: Interpretation

What does the mean return of each action in Monte Carlo Search actually estimate?

s

a1 a2

Monte Carlo Search: Interpretation

What does the mean return of each action in Monte Carlo Search actually estimate?
- The Q(s,a) value of that action under the roll-out policy

s

a1 a2

Qroll-out(s,a)≈2 Qroll-out(s,a)≈5

Monte Carlo Search: Interpretation

What does the mean return of each action in Monte Carlo Search actually estimate?
- The Q(s,a) value of that action under the roll-out policy

We then greedily select the action with the highest value

s

a1 a2

Qroll-out(s,a)≈2 Qroll-out(s,a)≈5

Monte Carlo Search: Interpretation

What does the mean return of each action in Monte Carlo Search actually estimate?
- The Q(s,a) value of that action under the roll-out policy

We then greedily select the action with the highest value
- A form of local, one-step policy improvement over the prior roll-out policy

s

a1 a2

Qroll-out(s,a)≈2 Qroll-out(s,a)≈5

Monte Carlo Search: Downside

Can you think of a downside of Monte Carlo Search?

Monte Carlo Search: Downside

Can you think of a downside of Monte Carlo Search?

It does not store any statistics or do any policy improvement below depth 1

Monte Carlo Search: Downside

Can you think of a downside of Monte Carlo Search?

It does not store any statistics or do any policy improvement below depth 1

Monte Carlo Search: Downside

Can you think of a downside of Monte Carlo Search?

It does not store any statistics or do any policy improvement below depth 1

black box: not changing your
policy based on the search

Sparse sampling

Sparse sampling

Main idea: Repeat the same process at deeper levels

Sparse sampling

s

Sparse sampling

s

a1 a2

A=2

N=3

Sparse sampling

s

a1 a2

A=2

N=3

Sparse sampling

s

a1 a2

A=2

N=3

Now also do policy
improvement at deeper levels

Sparse sampling

s

a1 a2

A=2

N=3

D=100

Sparse sampling

s

a1 a2

A=2

N=3

D=100

In the end select action with
the highest mean return

Sparse sampling

s

a1 a2

A=2

N=3

D=100

Sample complexity: ?

In the end select action with
the highest mean return

Sparse sampling

s

a1 a2

A=2

N=3

D=100

Sample complexity: (A⋅ N)D

In the end select action with
the highest mean return

Sparse sampling

Sparse sampling

What is the problem with sparse sampling?

Sparse sampling

What is the problem with sparse sampling?
- It’s very expensive (exponential in D). Not complete enumeration, but still spends

much effort in poorly performing directions.

Sparse sampling

What is the problem with sparse sampling?
- It’s very expensive (exponential in D). Not complete enumeration, but still spends

much effort in poorly performing directions.

Can you think of a solution?

Sparse sampling

What is the problem with sparse sampling?
- It’s very expensive (exponential in D). Not complete enumeration, but still spends

much effort in poorly performing directions.

Can you think of a solution?
- Adaptive Monte Carlo methods → replace Uniform sampling with an adaptive

bandit algorithm (Ch. 2) that focuses in directions where initial samples perform
well (trading-off exploration & exploitation).

Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search (MCTS)

Main idea: iteratively apply adaptive bandit algorithm at every depth

Monte Carlo Tree Search (MCTS)

Main idea: iteratively apply adaptive bandit algorithm at every depth

Naturally
produces an
asymmetric
search tree

Monte Carlo Tree Search (MCTS)

Main idea: iteratively apply adaptive bandit algorithm at every depth

Naturally
produces an
asymmetric
search tree

Extends deeper in
directions where

initial samples giving
promising returns

(sample-based
equivalent of

prioritized search)

Monte Carlo Tree Search (MCTS)

Main idea: iteratively apply adaptive bandit algorithm at every depth

Breakthrough performance in the game of Go

Naturally
produces an
asymmetric
search tree

Extends deeper in
directions where

initial samples giving
promising returns

(sample-based
equivalent of

prioritized search)

Four phases of MCTS

Four phases of MCTS

Four phases of MCTS

Each iteration makes one roll-out, that moves through four phases.

Selection

Selection

- Apply a bandit algorithm to select the most promising action
(balances exploration & exploitation)

Selection

- Apply a bandit algorithm to select the most promising action
(balances exploration & exploitation)

- Most common choice:
Upper Confidence Bounds applied to Trees (UCT)

Selection

- Apply a bandit algorithm to select the most promising action
(balances exploration & exploitation)

- Most common choice:
Upper Confidence Bounds applied to Trees (UCT)

Select the action with the highest

Selection

- Apply a bandit algorithm to select the most promising action
(balances exploration & exploitation)

- Most common choice:
Upper Confidence Bounds applied to Trees (UCT)

mean return of previous traces
(exploitation)

Selection

- Apply a bandit algorithm to select the most promising action
(balances exploration & exploitation)

- Most common choice:
Upper Confidence Bounds applied to Trees (UCT)

c = constant we empirically tune
(higher c → more exploration)

Selection

- Apply a bandit algorithm to select the most promising action
(balances exploration & exploitation)

- Most common choice:
Upper Confidence Bounds applied to Trees (UCT)

n(s) = number of traces through state
n(s,a) = number of traces through state-action

(exploration: lower n(s,a) → higher second term)

Selection

- Apply a bandit algorithm to select the most promising action
(balances exploration & exploitation)

- Most common choice:
Upper Confidence Bounds applied to Trees (UCT)

- What is the UCT value of an untried action [n(s,a)=0]?

Selection

- Apply a bandit algorithm to select the most promising action
(balances exploration & exploitation)

- Most common choice:
Upper Confidence Bounds applied to Trees (UCT)

- What is the UCT value of an untried action [n(s,a)=0]?
- We treat the second term as infinity (divide over 0) and therefore always

select an untried action when available (=expand)

Expansion

Expansion

- Once we reach an unvisited action, expand it
(i.e. add child state and its actions to the tree)

Expansion

- Once we reach an unvisited action, expand it
(i.e. add child state and its actions to the tree)

- Each iteration expands the tree with only one new state. Why?

Expansion

- Once we reach an unvisited action, expand it
(i.e. add child state and its actions to the tree)

- Each iteration expands the tree with only one new state. Why?

- Could store everything below but eats away memory
and compute. We only start storing a deeper state once
we repeatedly visited that direction.

Simulation

Simulation

Again use Monte Carlo roll-out as an estimate of the value
of the expanded state

Simulation

Again use Monte Carlo roll-out as an estimate of the value
of the expanded state

- Default = random policy, can use better prior policy
when available.

Simulation

Again use Monte Carlo roll-out as an estimate of the value
of the expanded state

- Default = random policy, can use better prior policy
when available.

- Note max total depth D (so if current leaf at depth 5
with D=100, then you roll-out for length 95)

Backup

Backup

Update the statistics throughout the tree to direct the next iteration

Backup

Update the statistics throughout the tree to direct the next iteration

- Action nodes: store visit count n(s,a) and mean return Q(s,a)

Backup

Update the statistics throughout the tree to direct the next iteration

- Action nodes: store visit count n(s,a) and mean return Q(s,a)

May also store the return sum
of all traces through (s,a) as

Rsum(s,a) and compute Q(s,a) =
Rsum(s,a)/n(s,a)

Backup

Update the statistics throughout the tree to direct the next iteration

- Action nodes: store visit count n(s,a) and mean return Q(s,a)

- State nodes: store visit count n(s)

May also store the return sum
of all traces through (s,a) as

Rsum(s,a) and compute Q(s,a) =
Rsum(s,a)/n(s,a)

Backup

Update the statistics throughout the tree to direct the next iteration

- Action nodes: store visit count n(s,a) and mean return Q(s,a)

- State nodes: store visit count n(s)

Or compute them as ∑a n(s,a)
once needed

May also store the return sum
of all traces through (s,a) as

Rsum(s,a) and compute Q(s,a) =
Rsum(s,a)/n(s,a)

Monte Carlo Tree Search

s

1. Select
2. Expand
3. Roll-out
4. Back-up

Monte Carlo Tree Search

s

a1 a2

Q=0

n=0

Q=0

n=0

1. Select
2. Expand
3. Roll-out
4. Back-up

Monte Carlo Tree Search

s

a1 a2

Q=0

n=0

Q=0

n=0

1. Select
2. Expand
3. Roll-out
4. Back-up

Initialize mean action return (Q(s,a)) and
count (n(s,a)) to 0

Monte Carlo Tree Search

s

a1 a2

Q=0

n=0

Q=0

n=0

1. Select
2. Expand
3. Roll-out
4. Back-up

Both actions untried (n=0), randomly pick one

Select next action based on UCT rule:

Monte Carlo Tree Search

s

a1 a2

Q=0

n=0

Q=0

n=0

1. Select
2. Expand
3. Roll-out
4. Back-up

We expand the tree once we
encounter an untried action

r=1

Monte Carlo Tree Search

s

a1 a2

Q=0

n=0

Q=0

n=0

Rsum= 4

1. Select
2. Expand
3. Roll-out
4. Back-up

r=1

Monte Carlo Tree Search

s

a1 a2

Q=5

n=1

Q=0

n=0

Rsum= 4

1. Select
2. Expand
3. Roll-out
4. Back-up

r=1

Monte Carlo Tree Search

s

a1 a2

Q=5

n=1

Q=0

n=0

1. Select
2. Expand
3. Roll-out
4. Back-up

r=1

First iteration, repeat!

Monte Carlo Tree Search

s

a1 a2

Q=5

n=1

Q=0

n=0

1. Select
2. Expand
3. Roll-out
4. Back-up

r=1

Monte Carlo Tree Search

s

a1 a2

Q=5

n=1

Q=0

n=0

1. Select
2. Expand
3. Roll-out
4. Back-up

Untried action always selected
(=expand a2)

r=1

Monte Carlo Tree Search

s

a1 a2

Q=5

n=1

Q=0

n=0

1. Select
2. Expand
3. Roll-out
4. Back-up

r=1 r=-2

Monte Carlo Tree Search

s

a1 a2

Q=5

n=1

Q=0

n=0

Rsum= 1

1. Select
2. Expand
3. Roll-out
4. Back-up

r=1 r=-2

Monte Carlo Tree Search

s

a1 a2

Q=5

n=1

Q=-1

n=1

Rsum= 1

1. Select
2. Expand
3. Roll-out
4. Back-up

r=-2r=1

Monte Carlo Tree Search

s

a1 a2

Q=5

n=1

Q=-1

n=1

1. Select
2. Expand
3. Roll-out
4. Back-up

r=-2r=1

Second iteration, repeat!

Monte Carlo Tree Search

s

a1 a2

Q=5

n=1

Q=-1

n=1

1. Select
2. Expand
3. Roll-out
4. Back-up

r=-2r=1

Monte Carlo Tree Search

s

a1 a2

Q=5

n=1

Q=-1

n=1

1. Select
2. Expand
3. Roll-out
4. Back-up

r=-2r=1

No untried action left, so now we really use the UCT select rule (assume c=1.0)

Monte Carlo Tree Search

s

a1 a2

Q=5

n=1

Q=-1

n=1

1. Select
2. Expand
3. Roll-out
4. Back-up

r=-2r=1

No untried action left, so now we really use the UCT select rule (assume c=1.0)

Q=5, n(s,a)=1, n(s)=2
UCT = 5.8

Q=-1, n(s,a)=1, n(s)=2
UCT = -0.2

Monte Carlo Tree Search

s

a1 a2

Q=5

n=1

Q=-1

n=1

1. Select
2. Expand
3. Roll-out
4. Back-up

r=-2r=1

No untried action left, so now we really use the UCT select rule (assume c=1.0)

Q=5, n(s,a)=1, n(s)=2
UCT = 5.8

Q=-1, n(s,a)=1, n(s)=2
UCT = -0.2

Monte Carlo Tree Search

s

a1 a2

Q=5

n=1

Q=-1

n=1
r=-2r=1

1. Select
2. Expand
3. Roll-out
4. Back-up

Now we need to select at
this state at depth 1.
What will happen?

Monte Carlo Tree Search

s

a1 a2

Q=0

n=0

Q=0

n=0

Q=5

n=1

Q=-1

n=1
r=-2r=1

1. Select
2. Expand
3. Roll-out
4. Back-up

Unvisited actions, need to expand,
randomly pick one of the available actions

Monte Carlo Tree Search

s

a1 a2

Q=0

n=0

Q=0

n=0

Q=5

n=1

Q=-1

n=1
r=-2r=1

1. Select
2. Expand
3. Roll-out
4. Back-up

r=0

Monte Carlo Tree Search

s

a1 a2

Rsum= 9

Q=0

n=0

Q=0

n=0

Q=5

n=1

Q=-1

n=1
r=-2r=1

1. Select
2. Expand
3. Roll-out
4. Back-up

r=0

Monte Carlo Tree Search

s

a1 a2

Rsum= 9

Q=0

n=0

Q=0

n=0

Q=5

n=1

Q=-1

n=1
r=-2r=1

1. Select
2. Expand
3. Roll-out
4. Back-up

r=0
?

Monte Carlo Tree Search

s

a1 a2

Rsum= 9

Q=0

n=0

Q=9

n=1

Q=5

n=1

Q=-1

n=1
r=-2r=1

1. Select
2. Expand
3. Roll-out
4. Back-up

r=0
?

Monte Carlo Tree Search

s

a1 a2

Rsum= 9

Q=0

n=0

Q=9

n=1

Q=5

n=1

Q=-1

n=1
r=-2r=1

1. Select
2. Expand
3. Roll-out
4. Back-up

r=0

?

Monte Carlo Tree Search

s

a1 a2

Rsum= 9

Q=0

n=0

Q=9

n=1

Q=7.5

n=2

Q=-1

n=1
r=-2r=1

1. Select
2. Expand
3. Roll-out
4. Back-up

r=0
Incremental update of the mean

(see Lecture on bandits)

Qnew ← Qold + (1/n) ⋅ [Rsum - Qold]

5 + ½ ⋅ [10 - 5] = 7.5

Monte Carlo Tree Search

s

a1 a2

Q=0

n=0

Q=9

n=1

Q=7.5

n=2

Q=-1

n=1
r=-2r=1

1. Select
2. Expand
3. Roll-out
4. Back-up

r=0

Third iteration,
repeat until trace budget M is up.

Monte Carlo Tree Search

s

a1 a2

Q=0

n=0

Q=9

n=1

Q=7.5

n=2

Q=-1

n=1
r=-2r=1

1. Select
2. Expand
3. Roll-out
4. Back-up

r=0

Third iteration,
repeat until trace budget M is up.

In the end pick action with
highest mean return Q or

highest count n
(often equivalent)

Monte Carlo Tree Search

s

a1 a2

Q=0

n=0

Q=9

n=1

Q=7.5

n=2

Q=-1

n=1
r=-2r=1

1. Select
2. Expand
3. Roll-out
4. Back-up

r=0

Third iteration,
repeat until trace budget M is up.

Sample complexity: ?

In the end pick action with
highest mean return Q or

highest count n
(often equivalent)

Monte Carlo Tree Search

s

a1 a2

Q=0

n=0

Q=9

n=1

Q=7.5

n=2

Q=-1

n=1
r=-2r=1

1. Select
2. Expand
3. Roll-out
4. Back-up

r=0

Third iteration,
repeat until trace budget M is up.

Sample complexity: M ⋅ D

In the end pick action with
highest mean return Q or

highest count n
(often equivalent)

Monte Carlo Tree Search

s

a1 a2

Q=0

n=0

Q=9

n=1

Q=7.5

n=2

Q=-1

n=1
r=-2r=1

1. Select
2. Expand
3. Roll-out
4. Back-up

r=0

Third iteration,
repeat until trace budget M is up.

Sample complexity: M ⋅ D

Note: M in MCTS (total # of
traces) is not the same as N

(# of traces per action) in
MCS and SS

In the end pick action with
highest mean return Q or

highest count n
(often equivalent)

Summary: Monte Carlo Tree Search

Summary: Monte Carlo Tree Search

- Very powerful search paradigm: adaptively focuses search budget based on
statistical uncertainty measures.

Summary: Monte Carlo Tree Search

- Very powerful search paradigm: adaptively focuses search budget based on
statistical uncertainty measures.

- One of the most popular algorithms in problems without a good heuristic.

4. Iterated planning & learning

Planning versus learning

Pure planning is often suboptimal

Planning versus learning

Pure planning is often suboptimal
-

Uninformed (sample-based) search is too
expensive & we lack good heuristics

Planning versus learning

Pure planning is often suboptimal
-

Uninformed (sample-based) search is too
expensive & we lack good heuristics

Pure learning is often suboptimal

Planning versus learning

Pure planning is often suboptimal
-

Uninformed (sample-based) search is too
expensive & we lack good heuristics

Pure learning is often suboptimal
-

Learned approximate value/policy typically
has remaining errors

Planning versus learning

Pure planning is often suboptimal
-

Uninformed (sample-based) search is too
expensive & we lack good heuristics

Pure learning is often suboptimal
-

Learned approximate value/policy typically
has remaining errors

But both approaches can be combined!

Planning versus learning

AlphaGo

AlphaGo

Planning..

AlphaGo

Planning..

 ..generates statistics..

AlphaGo

Planning..

 ..generates statistics..

AlphaGo

..that are used to train
(approximate) value and policy

functions..

Planning..

 ..generates statistics..

AlphaGo

..which we may itself use..

AlphaGo

..to steer new planning
iterations.

..which we may itself use..

Iterated planning and learning

Iterated planning and learning

Planning Learning

Iterated planning and learning

Planning Learning

… use learned value/policy function to steer new planning iterations.

Iterated planning and learning

Planning Learning

.. use planning to 1) correct errors in learned solution (‘decision-time planning’) and/or
2) generate training data for learning (‘background planning’).

… use learned value/policy function to steer new planning iterations.

Iterated planning and learning

Planning Learning

.. use planning to 1) correct errors in learned solution (‘decision-time planning’) and/or
2) generate training data for learning (‘background planning’).

… use learned value/policy function to steer new planning iterations.

Both types of
planning are

useful/combined in
this iterated scheme

Thinking fast & slow

Thinking fast & slow

Thinking fast & slow

Psychology research, but well interpretable in terms of AI

Thinking fast & slow

Thinking fast & slow

Learned (approximate) value function
=

‘Thinking fast’

Thinking fast & slow

Learned (approximate) value function
=

‘Thinking fast’

(reactive behaviour based on pattern
recognition in known situations)

Thinking fast & slow

Learned (approximate) value function
=

‘Thinking fast’

(reactive behaviour based on pattern
recognition in known situations)

Decision-time planning
=

‘Thinking slow’

Thinking fast & slow

Learned (approximate) value function
=

‘Thinking fast’

(reactive behaviour based on pattern
recognition in known situations)

Decision-time planning
=

‘Thinking slow’

(putting local effort in current decision to
overcome errors in the learned value function)

Thinking fast & slow

Learned (approximate) value function
=

‘Thinking fast’

(reactive behaviour based on pattern
recognition in known situations)

Decision-time planning
=

‘Thinking slow’

(putting local effort in current decision to
overcome errors in the learned value function)

Both have their role in optimal decision-making!

Thinking fast & slow

Learned (approximate) value function
=

‘Thinking fast’

(reactive behaviour based on pattern
recognition in known situations)

Decision-time planning
=

‘Thinking slow’

(putting local effort in current decision to
overcome errors in the learned value function)

Both have their role in optimal decision-making!
(more in later lecture on AlphaGo)

Summary

1. Decision-time versus background planning

2. Classic planning

3. Monte Carlo search

4. Iterated planning & learning

Summary

1. Decision-time versus background planning

2. Classic planning

3. Monte Carlo search

4. Iterated planning & learning

Questions?

